
PHPoC Device Programming Guide for P40 > Overview > Device

2024-07-12 Sollae Systems page 1 of 140

Device

Physical devices and software functions that PHPoC provides are called "device". Every device is
provided as a special file form and can be used like a general file such as reading/writing files.

PHPoC Device Programming Guide for P40 > Overview > Path of Device File

2024-07-12 Sollae Systems page 2 of 140

Path of Device Files

All device files of PHPoC are located in mmap (memory map) directory in root folder.

To access to a specific device, you should use a path like the example below.

/mmap/DEVICE_NAME

※ You can only access to the root, /lib and /mmap directory in this file system. In addition, users are
not allowed to make or remove directories.

PHPoC Device Programming Guide for P40 > Overview > Types of Devices

2024-07-12 Sollae Systems page 3 of 140

Types of Devices

PHPoC provides such types of devices below.

Division Device Name

Hardware
Digital I/O(Input and Output), UART(Serial), NET(Network), ADC(Analog Input),
I2C, SPI, HT(Hardware Timer), RTC(Real Time Clock)

Software
TCP, UDP, ST(Software Timer), System ENV, User ENV, User Memory, Non-volatile
Memory

※ Types may be different according to products and version of firmware.

※ Refer to Appendix for more detailed device information about devices depending on the types of
products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > Overview > Steps of Using Devices

2024-07-12 Sollae Systems page 4 of 140

Steps of Using Devices

General steps of using devices are as follows:

Opening Device

pid_open function is for opening devices. This function returns pid (Peripheral ID), which is an
integer value, and this value is used for accessing to devices as a unique number.

Using Device

After opening successfully, device, which returned pid indicates, is ready to use. You can use it with
functions such as pid_ioctl, pid_read and etc.

Closing Device

When device is not used anymore, it is needed to be closed by using pid_close function.

※ Caution: It is not possible to use a physical port by new device if the port has just been used, it is
not possible to be used by new device until rebooted although the device was closed. In other
words, a physical port cannot be used by more than two devices before it is initialized.

PHPoC Device Programming Guide for P40 > Digital I/O > Digital I/O Overview

2024-07-12 Sollae Systems page 5 of 140

Overview

Digital I/O can be used to monitor digital inputs or control digital outputs. This device is also used
to connect LED indicators showing system status.

Digital I/O Structure

Every digital I/O port can have two different states which are High (or 1) and Low (or 0). Therefore,
each port is matched to a binary digit as you can see below.

PHPoC Device Programming Guide for P40 > Digital I/O > Steps of Using Digital I/O

2024-07-12 Sollae Systems page 6 of 140

Steps of Using Digital I/O

General steps of using digital I/O ports are as follows:

PHPoC Device Programming Guide for P40 > Digital I/O > Opening Digital I/O

2024-07-12 Sollae Systems page 7 of 140

Opening Digital I/O

To open digital I/O, pid_open function is required.

<?php
$pid = pid_open("/mmap/uio0"); // open UIO 0
?>

※ Refer to Appendix for detailed digital I/O information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > Digital I/O > Setting Digital I/O

2024-07-12 Sollae Systems page 8 of 140

Setting Digital I/O

Before using digital I/O, setting each port is required. To set it, set command of pid_ioctl function is
used.

pid_ioctl($pid, "set N1[-N2] mode TYPE");

N1 and N2 indicate a range of multiple ports. You can only use N1 in the case of setting a single
port.

Setting to Input and Output

Available i/o types are as follows:

TYPE Description
in Digital Input
in_pu Digital Input: Pull-Up
in_pd Digital Input: Pull-Down

out

- Digital Output
low Digital Output: default LOW
high Digital Output: default HIGH
toggle Digital Output: default TOGGLE

out_pp

- Digital Output: Push-Pull
low Digital Output: Push-Pull + default LOW
high Digital Output: Push-Pull + default HIGH
toggle Digital Output: Push-Pull + default TOGGLE

out_od

- Digital Output: Open-Drain
low Digital Output: Open-Drain + default LOW
high Digital Output: Open-Drain + default HIGH
toggle Digital Output: Open-Drain + default TOGGLE

Input Port Pull-Up

Pull-Up makes a default state of a input port to HIGH. To do this, set the TYPE of the input port to
in_pu.

Input Port Pull-Down

Pull-Down makes a default state of input port to LOW. To do this, set the TYPE of the input port to
in_pd.

Output Port Push-Pull

Push-Pull is a basic output mode which makes a state of output port to HIGH when it is ON and
LOW when it is OFF. To do this, set the TYPE of output port to out_pp.

Output Port Open-Drain

This can be used when you want to connect external power source to an output port. The state of
output port will be LOW when it is OFF and UNKNOWN when it is ON if you do not connect any

PHPoC Device Programming Guide for P40 > Digital I/O > Setting Digital I/O

2024-07-12 Sollae Systems page 9 of 140

external power source while setting the port to open drain. Thus, you need to pull up this pin with
an external resistor.

To do this, set the TYPE of output port to out_od.

Setting to LED

Digital I/O ports can be set to one of the LED types. Available types of LED are as follows:

TYPE Description
led_sts System Status LED

led_net0_act
/ led_net1_act

Activation of NET(net0 - wired, net1 - wireless) link LED:
- successfully established network link: LOW
- at the moment sending or receiving network data: HIGH

led_net0_link
/ led_net1_link

Network Link LED: connected to network - LOW

led_net0_rx
/ led_net1_rx

Network Receive LED: at the moment receiving data - LOW

led_net0_tx
/ led_net1_tx

Network Send LED: at the moment sending data - LOW

※ Each LED type cannot be set to two or more output pins.

example of setting digital I/O

<?php
$pid = pid_open("/mmap/uio0"); // open UIO 0
pid_ioctl($pid, "set 0 mode in"); // set port 0 to input
pid_ioctl($pid, "set 1 mode in_pu"); // set port 1 to input: pull-up
pid_ioctl($pid, "set 2 mode in_pd"); // set port 2 to input: pull-down
pid_ioctl($pid, "set 3-6 mode out"); // set port 3 ~ 6 to output
// set port 7 ~ 9 to output with default high
pid_ioctl($pid, "set 7-9 mode out high");
// set port 10 to output with default low
pid_ioctl($pid, "set 10 mode out low");
// set port 11 to output: push-pull with default high
pid_ioctl($pid, "set 11 mode out_pp high");
// set port 12 to output: open-drain with default low
pid_ioctl($pid, "set 12 mode out_od low");
// set port 13 to network link LED
pid_ioctl($pid, "set 13 mode led_net0_link");
// set port 14 to network receive LED
pid_ioctl($pid, "set 14 mode led_net0_rx");
// set port 15 to network send LED
pid_ioctl($pid, "set 15 mode led_net0_tx");
?>

Setting Output Lock

You can lock or unlock to control output ports by using pid_ioctl command. When output lock is
enabled, output ports cannot be controlled before they are unlocked.

PHPoC Device Programming Guide for P40 > Digital I/O > Setting Digital I/O

2024-07-12 Sollae Systems page 10 of 140

<?php
pid_ioctl($pid, "set N1[-N2] lock"); // lock
pid_ioctl($pid, "set N1[-N2] unlock"); // unlock
?>

※ Caution: Digital I/O ports can be basically controlled. However, output lock is automatically
enabled to ports which are shared with ST, UART, SPI and I2C if they are used.

PHPoC Device Programming Guide for P40 > Digital I/O > Using Digital I/O

2024-07-12 Sollae Systems page 11 of 140

Using Digital I/O

Reading states of Digital I/O

When reading status of digital I/O ports, you can get multiple states of them with pid_read function
or a single state with pid_ioctl function. You can also read the type of a digital I/O port.

pid_read($pid, VALUE); // read multiple states(in 32bits unit)
pid_ioctl($pid, "get N ITEM"); // read a single state(in a bit unit)

In the way of reading a single state, available ITEMs are as follows:

ITEM Description

mode
Return the port status
in string type

I/O pin: "in", "out", "led_xxx" and so on
pins while using by UART, SPI or I2C: "hdev"
Designated to output pin of ST: "st_out"

input Return the input port status in integer (0: LOW, 1: HIGH)
output Return the output port status in integer (0: LOW, 1: HIGH)

example of reading multiple digital I/O states

The example below prints status of port 0 to 7 after setting them to input and getting the status.

<?php
$value = 0;
$pid = pid_open("/mmap/uio0"); // open UIO0
pid_ioctl($pid, "set 0-7 mode in_pu"); // set port 0 ~ 7 to input(pull-up)
pid_read($pid, $value); // read digital I/O status(32bits unit)
printf("0x%x\r\n", $value); // output example : 0xffffffff
?>

example of reading a single I/O state

The example below prints a state of port 0 of UIO0 after setting it to output and getting the mode
and state.

<?php
$pid = pid_open("/mmap/uio0"); // open UIO0
pid_ioctl($pid, "set 0 mode out high"); // set port 0 to output
$mode = pid_ioctl($pid, "get 0 mode"); // read a digital I/O mode
$output = pid_ioctl($pid, "get 0 output"); // read a digital I/O state
printf("%s, %d\r\n", $mode, $output); // output : out, 1
?>

※ When reading a port state with pid_ioctl function, you must use "get N input" if it is set to input

PHPoC Device Programming Guide for P40 > Digital I/O > Using Digital I/O

2024-07-12 Sollae Systems page 12 of 140

port and use "get N output" if it is set to output port.

Writing Values to Digital I/O

When writing values to digital I/O ports, you can set a value to multiple ports with pid_write function
or a single port with pid_ioctl function.

pid_write($pid, VALUE); // write to multiple ports(32 bits unit)
pid_ioctl($pid, "set N output TYPE"); // write to a single port(a bit unit)

example of writing values to multiple ports

The following example prints the states of digital I/O ports after setting 0 ~ 7 pins of UIO0 to
output ports and writing a given value.

<?php
$value = 0;
$pid = pid_open("/mmap/uio0"); // open UIO0
pid_ioctl($pid, "set 0-7 mode out"); // set port 0 ~ 7 to output
pid_read($pid, $value); // read status
pid_write($pid, ($value & 0xffffff00) | 0x00000055); // write 0x00000055
pid_read($pid, $value); // read status
printf("0x%0x\r\n", $value); // output example : 0x00000055
?>

example of writing a value to a single port

The following example prints a state of UIO0's port 0 after setting it to digital output with default
LOW and writing HIGH.

<?php
$pid = pid_open("/mmap/uio0"); // open UIO0
pid_ioctl($pid, "set 0 mode out low"); // set port 0 to output(LOW)
pid_ioctl($pid, "set 0 output high"); // write HIGH
$output = pid_ioctl($pid, "get 0 output"); // read state of port 0
printf("%d\r\n", $output); // output : 1
?>

example of setting output lock

The following example shows the difference between locked and unlocked state of port 0.

<?php
$pid = pid_open("/mmap/uio0"); // open UIO0
pid_ioctl($pid, "set 0 mode out low"); // set port 0 to output(LOW)
pid_ioctl($pid, "set 0 lock"); // enable port 0 to output lock

PHPoC Device Programming Guide for P40 > Digital I/O > Using Digital I/O

2024-07-12 Sollae Systems page 13 of 140

pid_ioctl($pid, "set 0 output high"); // write HIGH to port 0
$output1 = pid_ioctl($pid, "get 0 output"); // read state of port 0
pid_ioctl($pid, "set 0 unlock"); // disable the output lock
pid_ioctl($pid, "set 0 output high"); // write HIGH to port 0 again
$output2 = pid_ioctl($pid, "get 0 output"); // read state of port 0
printf("%d, %d\r\n", $output1, $output2); // output : 0, 1
?>

PHPoC Device Programming Guide for P40 > UART > Steps of Using UART

2024-07-12 Sollae Systems page 14 of 140

Steps of Using UART

General steps of using UART ports are as follows:

PHPoC Device Programming Guide for P40 > UART > Opening UART

2024-07-12 Sollae Systems page 15 of 140

Opening UART

To open UART, pid_open function is required.

<?php
$pid = pid_open("/mmap/uart0"); // opening UART 0
?>

※ Refer to Appendix for detailed UART information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > UART > Setting UART

2024-07-12 Sollae Systems page 16 of 140

Setting UART

Before using UART, it needs to set parameters such as baud rate, data bit, stop bit, parity and
flowcontrol by using "set" command of pid_ioctl function.

pid_ioctl($pid, "set ITEM VALUE");

ITEM means setting items and VALUE is possible value of the item.

Available UART Items

ITEM VALUE Description
Default
Value

baud ex) 9600 baud rate[bps] 19200

parity

0 no parity

0
1 EVEN parity
2 ODD parity
3 MARK parity (always 1)
4 SPACE parity (always 0)

data
8 8 data bit

8
7 7 data bit(it can be only used with parity bit)

stop
1 1 stop bit

1
2 2 stop bit

flowctrl

0 no flow control

0
1 RTS/CTS hardware flow control
2 Xon/Xoff software flow control
3 TxDE flow control for RS485

example of setting UART

<?php
$pid = pid_open("/mmap/uart0"); // open UART 0
pid_ioctl($pid, "set baud 9600"); // baud rate: 9600 bps
pid_ioctl($pid, "set parity 0"); // no parity
pid_ioctl($pid, "set data 8"); // data bit length: 8
pid_ioctl($pid, "set stop 1"); // stop bit length: 1
pid_ioctl($pid, "set flowctrl 0"); // no flow control
?>

PHPoC Device Programming Guide for P40 > UART > Getting Status of UART

2024-07-12 Sollae Systems page 17 of 140

Getting Status of UART

To get various states of UART, get command of pid_ioctl function is required.

$return = pid_ioctl($pid, "get ITEM");

Available UART States

ITEM Description Return Value Return Type
baud baud rate[bps] e.g. 9600 Integer
parity parity 0 / 1 / 2 / 3 / 4 Integer
data data bit[bit] 8 / 7 Integer
stop stop bit[bit] 1 / 2 Integer
flowctrl flowctrl 0 / 1 / 2 / 3 Integer
txbuf size of send buffer[Byte] e.g. 1024 Integer
txfree free send buffer size[Byte] e.g. 1024 Integer
count tx total size of transmitted data[Byte] e.g. 65535 Integer
rxbuf size of receive buffer[Byte] e.g. 1024 Integer
rxlen received data size[Byte] e.g. 10 Integer
count rx total size of data received[Byte] e.g. 65535 Integer

example of getting UART states

Checking current information of UART is as follows:

<?php
$pid = pid_open("/mmap/uart0"); // open UART 0
$baud = pid_ioctl($pid, "get baud"); // get baud rate
$parity = pid_ioctl($pid, "get parity"); // get parity
$data = pid_ioctl($pid, "get data"); // get data bit
$stop = pid_ioctl($pid, "get stop"); // get stop bit
$flowctrl = pid_ioctl($pid, "get flowctrl"); // get flow control mode
echo "baud = $baud\r\n"; // output e.g.: baud = 9600
echo "parity = $parity\r\n"; // output e.g.: parity = 0
echo "data = $data\r\n"; // output e.g.: data = 8
echo "stop = $stop\r\n"; // output e.g.: stop = 1
echo "flowctrl = $flowctrl\r\n"; // output e.g.: flowctrl = 0
?>

Remaining Data Size in Send Buffer

Remaining data size in send buffer can be calculated as follows:

remaining data size in send buffer = size of buffer - free size of buffer

PHPoC Device Programming Guide for P40 > UART > Getting Status of UART

2024-07-12 Sollae Systems page 18 of 140

example

This example shows how to check remaining data size of send buffer.

<?php
$txlen = -1;
$data = "0123456789";
$pid = pid_open("/mmap/uart0"); // open UART 0
pid_ioctl($pid, "set baud 9600"); // baud rate: 9600 bps
pid_ioctl($pid, "set parity 0"); // parity: none
pid_ioctl($pid, "set data 8"); // data bit: 8
pid_ioctl($pid, "set stop 1"); // stop bit: 1
pid_ioctl($pid, "set flowctrl 0"); // flow control: none
pid_write($pid, $data); // write data to UART
while($txlen)
{
 $txbuf = pid_ioctl($pid, "get txbuf"); // get size of send buffer
 $txfree = pid_ioctl($pid, "get txfree"); // get remaining size of send buffer
 $txlen = $txbuf - $txfree; // calculate remaining data size
 echo "tx len = $txlen\r\n"; // prints the size
 usleep(1000);
}
pid_close($pid);
?>

Received Data Size

The following shows how to get received data size of UART.

$rxlen = pid_ioctl($pid, "get rxlen[$string]");

Getting received data size with a string

If a string is specified after "get rxlen" command, pid_ioctl function returns 0 until the string comes
into UART. If the specified string comes, it returns the whole data size including the string.

Remaining Size of Receive Buffer

Remaining size of receive buffer can be calculated as follows:

>remaining size of receive buffer = size of buffer - received data size

example

This example shows how to get remaining size of receive buffer.

PHPoC Device Programming Guide for P40 > UART > Getting Status of UART

2024-07-12 Sollae Systems page 19 of 140

<?php
$rdata = "";
$pid = pid_open("/mmap/uart0"); // open UART 0
pid_ioctl($pid, "set baud 9600"); // baud rate: 9600 bps
pid_ioctl($pid, "set parity 0"); // parity: none
pid_ioctl($pid, "set data 8"); // data bit: 8
pid_ioctl($pid, "set stop 1"); // stop bit: 1
pid_ioctl($pid, "set flowctrl 0"); // flow control: none
$rxbuf = pid_ioctl($pid, "get rxbuf"); // get size of receive buffer
$rxlen = pid_ioctl($pid, "get rxlen"); // get received data size
$rxfree = $rxbuf - $rxlen; // get remaining size of receive buffer
echo "rxfree = $rxfree\r\n"; // print the size
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > UART > Using UART

2024-07-12 Sollae Systems page 20 of 140

Using UART

Reading Data

Data received from UART is stored in receive buffer. pid_read function is required to read the data.

The following shows how to use the pid_read function.

pid_read($pid, $var[, $len]);

Argument $var is a variable for saving the read data and $len is size of read data.

example

This example checks and prints received data to UART every second.

<?php
$pid = pid_open("/mmap/uart0"); // open UART 0
pid_ioctl($pid, "set baud 9600"); // baud rate: 9600bps
pid_ioctl($pid, "set parity 0"); // parity: none
pid_ioctl($pid, "set data 8"); // data bit: 8
pid_ioctl($pid, "set stop 1"); // stop bit: 1
$rxbuf = pid_ioctl($pid, "get rxbuf"); // get size of receive buffer
while(1)
{
 $rdata = "";
 $len_tot = pid_ioctl($pid, "get count rx"); // get total size of data received
 $rxlen = pid_ioctl($pid, "get rxlen"); // get size of data received
 $rx_free = $rxbuf - $rxlen; // get remaining size
 echo "$rx_free / $rxbuf\r\n"; // print remaining size
 $len = pid_read($pid, $rdata, $rxlen); // read data
 echo "len[total] = $len[$len_tot] / "; // print size of read data
 echo "rdata = $rdata\r\n"; // print read data
 sleep(1);

PHPoC Device Programming Guide for P40 > UART > Using UART

2024-07-12 Sollae Systems page 21 of 140

}
pid_close($pid);
?>

Sending Data

Data, written by pid_write function, is stored in send buffer and transferred to the outside via UART.

The following shows how to use pid_write function.

pid_write($pid, $var[, $wlen]);

Argument $var is a variable containing data to send and $wlen is a size of sending data.

example

This example prints the remaining size of send buffer and length of sent data every second.

<?php
$len_tot = 0;
$sdata = "0123456789";
$pid = pid_open("/mmap/uart0"); // open UART 0
pid_ioctl($pid, "set baud 9600"); // baud rate: 9600bps
$txbuf = pid_ioctl($pid, "get txbuf"); // get size of send buffer
while(1)
{
 $len_tot = pid_ioctl($pid, "get count tx"); // get total size of transmitted data
 $txfree = pid_ioctl($pid, "get txfree"); // get remaining size
 echo "txfree = $txfree\r\n"; // print remaining size
 $len = pid_write($pid, $sdata, $txfree); // write data
 echo "len[total] = $len[$len_tot]\r\n"; // print length of data sent
 sleep(1);
}
pid_close($pid);

PHPoC Device Programming Guide for P40 > UART > Using UART

2024-07-12 Sollae Systems page 22 of 140

?>

The third argument of pid_write function means the length of writing data. The length of writing
data should be less than the remaining data size of send buffer to avoid data loss. It is highly
recommended to check remaining size of send buffer before sending data.

PHPoC Device Programming Guide for P40 > NET > Steps of Using NET

2024-07-12 Sollae Systems page 23 of 140

Steps of Using NET

General steps of using NET are as follows:

PHPoC Device Programming Guide for P40 > NET > Opening NET

2024-07-12 Sollae Systems page 24 of 140

Opening NET

To open NET, pid_open function is required.

<?php
$pid = pid_open("/mmap/net0"); // opening NET 0
?>

※ Refer to Appendix for detailed NET information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > NET > Setting NET

2024-07-12 Sollae Systems page 25 of 140

Setting NET

You can set a repeat count and an interval for sending Gratuitous ARP packet by using set
command of pid_ioctl function. PHPoC sends 4 Gratuitous arp packets with an interval of 2 seconds
when it boots. If you want to manually send the packet, you can use this command.

pid_ioctl($pid, "set garp RC INTV");

RC means a repeat count and INTV means an interval.

example of setting Gratuitous ARP

This example shows how to set Gratuitous arp.

<?php
$pid = pid_open("/mmap/net0"); // open NET 0 (Ethernet)
pid_ioctl($pid, "set garp 5 10"); // set GARP (5 times at an interval of 10 secs)
?>

PHPoC Device Programming Guide for P40 > NET > Getting Status of NET

2024-07-12 Sollae Systems page 26 of 140

Getting Status of NET

To get a status of the NET port, get command of pid_ioctl function is required.

$return = pid_ioctl($pid, "get ITEM");

ITEM is a name of available states.

Available NET States

ITEM Description Return Value Return Type
hwaddr MAC Address e.g. 00:30:f9:00:00:01 string
ipaddr IP Address e.g. 10.1.0.1 string
netmask Subnet Mask e.g.) 255.0.0.0 string
gwaddr Gateway Address e.g. 10.1.0.254 string
nsaddr Name Server Address e.g. 10.1.0.254 string

mode

10M Ethernet 10BASET string
100M Ethernet 100BASET string
WLAN Unavailable ""(an Empty String) string
WLAN Infrastructure INFRA string
WLAN Ad-hoc IBSS string
WLAN Soft AP AP string

speed
Ethernet Speed[Mbps] 0 / 10 / 100 integer

WLAN Speed[100Kbps]
0 / 10 / 20 / 55 / 110 / 60 / 90 / 120
/ 180 / 240 / 360 / 480 / 540

integer

example of getting NET states

This example checks and prints various states of NET.

<?php
$pid = pid_open("/mmap/net1"); // open NET 1
echo pid_ioctl($pid, "get hwaddr"), "\r\n"; // get MAC address
echo pid_ioctl($pid, "get ipaddr"), "\r\n"; // get IP address
echo pid_ioctl($pid, "get netmask"), "\r\n"; // get subnet mask
echo pid_ioctl($pid, "get gwaddr"), "\r\n"; // get gateway address
echo pid_ioctl($pid, "get nsaddr"), "\r\n"; // get name server address
echo pid_ioctl($pid, "get mode"), "\r\n"; // get WLAN mode
echo pid_ioctl($pid, "get speed"), "\r\n"; // get WLAN speed
pid_close($pid); // close NET 1
?>

PHPoC Device Programming Guide for P40 > TCP > Steps of Using TCP

2024-07-12 Sollae Systems page 27 of 140

Steps of Using TCP

General steps of using TCP are as follows:

※ In the case of setting a device to a TCP server, binding phase cannot be omitted.

PHPoC Device Programming Guide for P40 > TCP > Opening TCP

2024-07-12 Sollae Systems page 28 of 140

Opening TCP

To open a TCP session, pid_open function is required.

<?php
$pid = pid_open("/mmap/tcp0"); // open TCP 0
?>

※ Refer to Appendix for detailed TCP information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > TCP > Setting TCP

2024-07-12 Sollae Systems page 29 of 140

Setting TCP

Some parameters may be needed to set before using TCP. On SSL or web socket communication,
especially, SSL setting is required before connection by set command of pid_ioctl function.

pid_ioctl($pid, "set ITEM VALUE");

ITEM means setting items and VALUE is possible value of the item.

Available TCP Items

ITEM VALUE Description

nodelay
0 Enable Nagle algorithm
1 Disable Nagle algorithm

api

ssl Use SSL

tls
Use SSL
※ available on F/W 1.5.0 or later

ws Use Web Socket server

ssl method
client

SSL client (version: automatic)
※ available on F/W 1.3.1 or later

server
SSL server (version: automatic)
※ available on F/W 1.3.1 or later

ws

path PATH Set path of web socket URI

mode
0 Set data type of web socket: text
1 Set data type of web socket: binary

proto PROTOCOL Set protocol of web socket
origin ADDR Specify a host to allow connection

※ Note : It is recommended to set "ssl method" to "client" or "server".(required to use F/W 1.3.1 or
later)

※ Note : Both "ssl3_client" and "ssl3_server" commands on "ssl method" are no more supported on
F/W 1.5.0 or later.

※ Note : Both "tls1_client" and "tls1_server" commands on "ssl method" are no more supported on
F/W 2.1.0 or later.

※ Note : Both "telnet" and "ssh" commands on "api" are no more supported on F/W 2.1.0 or later.

※ Caution : TCP Nagle Algorithm is to improve effective data transmission by reducing the number
of segments. Thus, it may accompany a little delay.

※ Caution : Only TCP 0 to 3 are available for setting SSL. In addition, it is not possible to set the TCP
id to another api mode before product reboots.

PHPoC Device Programming Guide for P40 > TCP > Setting TCP > How to Use SSL

2024-07-12 Sollae Systems page 30 of 140

How to Use SSL

PHPoC activates an SSL function using the following two commands:

command available F/W version
"set api ssl" all
"set api tls" 1.5.0 or later

The result of the two commands are identical.

The following example shows how to use it as an SSL server.

example of SSL server

<?php
$port = 1470; // port number
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_ioctl($pid, "set api ssl"); // set api to SSL
pid_ioctl($pid, "set ssl method server"); // set SSL server mode
pid_bind($pid, "", $port); // binding
pid_listen($pid); // listen TCP connection
do
 $state = pid_ioctl($pid, "get state");
while(($state != SSL_CLOSED) && ($state != SSL_CONNECTED));

if($state == SSL_CONNECTED)
{
 echo "Connection has been established!\r\n";
 pid_close($pid); // close TCP connection
}
?>

※ It is necessary to store a certification into PHPoC before you use it as a SSL server. Create or save
a certificate to your product by PHPoC Debugger.

The following example shows how to use PHPoC as an SSL client.

example of SSL client

<?php
$addr = "10.1.0.2"; // server's IP address
$port = 1470; // server's port number
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_ioctl($pid, "set api ssl"); // set api to SSL
pid_ioctl($pid, "set ssl method client"); // set SSL client mode
pid_bind($pid, "", 0); // binding
pid_connect($pid, $addr, $port); // connect to TCP server
do
 $state = pid_ioctl($pid, "get state");

PHPoC Device Programming Guide for P40 > TCP > Setting TCP > How to Use SSL

2024-07-12 Sollae Systems page 31 of 140

while(($state != SSL_CLOSED) && ($state != SSL_CONNECTED));

if($state == SSL_CONNECTED)
{
 echo "Connection has been established!\r\n";
 pid_close($pid); // close TCP connection
}
?>

※ SSL communication may not be performed in case of lack of memory caused by increased
memory usage of PHPoC.

PHPoC Device Programming Guide for P40 > TCP > Setting TCP > How to Use Web Socket

2024-07-12 Sollae Systems page 32 of 140

How to Use Web Socket Server

PHPoC can be a web socket server by using "set api ws" command. The following example shows
how to use web socket server.

example of web socket server

This example listens TCP connection from clients. After connection is established, PHPoC prints data
which is received from clients including the count of receiving data.

<?php
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_ioctl($pid, "set api ws"); // set api to web socket
pid_ioctl($pid, "set ws path WebConsole"); // set URI path: /WebConsole
pid_ioctl($pid, "set ws mode 0"); // set transmission mode: text
//pid_ioctl($pid, "set ws origin 10.1.0.1"); // specify a host to allow connection
pid_ioctl($pid, "set ws proto text.phpoc"); // protocol: text.phpoc
pid_bind($pid, "", 0); // binding: default(80)

while(1)
{
 if(pid_ioctl($pid, "get state") == TCP_CLOSED)
 pid_listen($pid); // listen TCP connection

 pid_send($pid, "hello, world!\r\n"); // send data
 sleep(1);
}
pid_close($pid);
?>

The following is a simple source code of web page which can be used for as a web socket client to
connect with PHPoC web socket server above.

<html>
<head>
<title>PHPoC / <?echo system("uname -i")?></title>
<meta name="viewport" content="width=device-width, initial-scale=0.7">
<style>
body { text-align:center; }
textarea { width:400px; height:400px; padding:10px; font-family:courier; font-size:14px; }
 </style>
<script>
var ws;
var wc_max_len = 32768;
function ws_onopen()
{
 document.getElementById("ws_state").innerHTML = "OPEN";
 document.getElementById("wc_conn").innerHTML = "Disconnect";
}

PHPoC Device Programming Guide for P40 > TCP > Setting TCP > How to Use Web Socket

2024-07-12 Sollae Systems page 33 of 140

function ws_onclose()
{
 document.getElementById("ws_state").innerHTML = "CLOSED";
 document.getElementById("wc_conn").innerHTML = "Connect";

 ws.onopen = null;
 ws.onclose = null;
 ws.onmessage = null;
 ws = null;
}
function wc_onclick()
{
 if(ws == null)
 {
 ws = new WebSocket("ws://<?echo _SERVER("HTTP_HOST")?>/WebConsole", "text.phpoc");
 document.getElementById("ws_state").innerHTML = "CONNECTING";

 ws.onopen = ws_onopen;
 ws.onclose = ws_onclose;
 ws.onmessage = ws_onmessage;
 }
 else
 ws.close();
}
function ws_onmessage(e_msg)
{
 e_msg = e_msg || window.event; // MessageEvent

 var wc_text = document.getElementById("wc_text");
 var len = wc_text.value.length;

 if(len > (wc_max_len + wc_max_len / 10))
 wc_text.innerHTML = wc_text.value.substring(wc_max_len / 10);

 wc_text.scrollTop = wc_text.scrollHeight;
 wc_text.innerHTML += e_msg.data;
}
function wc_clear()
{
 document.getElementById("wc_text").innerHTML = "";
}
</script>
</head>
<body>

<h2>
<p>
Web Console : CLOSED

</p>
<textarea id="wc_text" readonly="readonly"></textarea>

<button id="wc_conn" type="button" onclick="wc_onclick();">Connect</button>
<button id="wc_clear" type="button" onclick="wc_clear();">Clear</button>
</h2>

</body>

PHPoC Device Programming Guide for P40 > TCP > Setting TCP > How to Use Web Socket

2024-07-12 Sollae Systems page 34 of 140

</html>

in the above example, both web socket server (php script) and client (javascript) is implement on
PHPoC but web socket server is executed on PHPoC and web socket client is executed on web
browser. The below image show the working flow of the above example.

※ You can make more powerful web interface by modifying the above web socket client script (in
index.php) and web server script (in task0.php).

※ It is required to use a browser which supports web socket.

PHPoC Device Programming Guide for P40 > TCP > TCP Connection

2024-07-12 Sollae Systems page 35 of 140

TCP Connection

TCP Client (Active Connection)

Active connection means sending a TCP connection request packet to a TCP server and this host is
called TCP client. To perform TCP client, pid_bind and pid_connect function are required.

pid_bind($pid, "", 0);
pid_connect($pid, $addr, $port);

Argument $addr is an IP address of a TCP server and $port is a port number.

example of TCP client

<?php
$pid = pid_open("/mmap/tcp0"); // open TCP
$addr = "10.1.0.2"; // IP address of TCP server
$port = 1470; // TCP port
pid_bind($pid, "", 0); // binding
pid_connect($pid, $addr, $port); // active TCP connection
sleep(25);
pid_close($pid);
?>

TCP Server (Passive Connection)

Passive connection means listening a TCP connection request packet from a TCP client and this host
is called TCP server. To perform TCP server, pid_bind and pid_listen function are required.

pid_bind($pid, "", $port);
pid_listen($pid[, $backlog]);

Argument $port is a TCP port number.

example of TCP Server

<?php
$pid = pid_open("/mmap/tcp0"); // open TCP
$port = 1470; // TCP port number
pid_bind($pid, "", $port); // bind with the port number
pid_listen($pid); // passive TCP connection
sleep(25);
pid_close($pid);

PHPoC Device Programming Guide for P40 > TCP > TCP Connection

2024-07-12 Sollae Systems page 36 of 140

?>

PHPoC Device Programming Guide for P40 > TCP > Getting Status of TCP

2024-07-12 Sollae Systems page 37 of 140

Getting Status of TCP

To get states of TCP, get command of pid_ioctl function is required.

$return = pid_ioctl($pid, "get ITEM");

Available TCP States

ITEM Description Return Value Return Type

state

TCP session is closed TCP_CLOSED integer
TCP session is connected TCP_CONNECTED integer
TCP session waits for connection TCP_LISTEN integer
SSL session is closed SSL_CLOSED integer
SSL session is connected SSL_CONNECTED integer
SSL session waits for connection SSL_LISTEN integer

srcaddr local IP address e.g. 192.168.0.1 string
srcport local port number e.g. 1470 integer
dstaddr peer IP address e.g. 192.168.0.2 string
dstport peer TCP number e.g. 1470 integer
txbuf size of send buffer[Byte] e.g. 1152 integer
txfree remaining send buffer size[Byte] e.g. 1152 integer
rxbuf size of receive buffer[Byte] e.g. 1068 integer
rxlen received data size[Byte]/td> e.g. 200 integer

TCP Session Status

Checking status of connection on TCP is very important because TCP data communication is made
after the connection phase. There are three session states: TCP_CLOSED when session is not
connected, TCP_CONNECTED when session is connected and TCP_LISTEN when TCP server is
listening connection. SSL has also the same states with TCP. These values are all predefined
constants of PHPoC.
The following shows how to get states of session.

<?php
$state = pid_ioctl($pid, "get state");
?>

※ An unknown value, which is not listed in the table above, could be returned if you try to get a
state when PHPoC is connecting or closing connection. Note that it is not recommended to use
these values in your script because it might be changed in the future.

Remaining Data Size in Send Buffer

Remaining data size in send buffer can be calculated as follows:

remaining data size in send buffer = size of buffer - remaining size of buffer

PHPoC Device Programming Guide for P40 > TCP > Getting Status of TCP

2024-07-12 Sollae Systems page 38 of 140

example

In this example, PHPoC sends 8 bytes data to a server right after TCP connection is established.
While sending the data, PHPoC prints remaining data size in send buffer.

<?php
$tx_len = -1;
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_bind($pid, "", 0); // binding
do
{
 pid_connect($pid, "10.1.0.2", 1470); // TCP active connection
 usleep(500000);
}
while(pid_ioctl($pid, "get state") != TCP_CONNECTED);
pid_send($pid, "01234567"); // send 8 bytes
while($tx_len && (pid_ioctl($pid, "get state") == TCP_CONNECTED))
{
 $txbuf = pid_ioctl($pid, "get txbuf"); // get the size of send buffer
 // get the empty size of send buffer
 $txfree = pid_ioctl($pid, "get txfree");
 // calculate the size of remaining data in send buffer
 $tx_len = $txbuf - $txfree;
 echo "tx len = $tx_len\r\n"; // print the result
 usleep(10000);
}
pid_close($pid); // close TCP

?>

Received Data Size

The following shows how to get the received data size from TCP socket.

$rxlen = pid_ioctl($pid, "get rxlen[$string]");

Getting the received data size with string

If a string is specified after "get rxlen" command, pid_ioctl function returns 0 until the string comes
into TCP socket. If the specified string comes, the function returns the whole data size including the
string.

Remaining Size of Receive Buffer

Remaining size of receive buffer can be calculated as follows:

remaining size of receive buffer = size of buffer - size of received data

PHPoC Device Programming Guide for P40 > TCP > Getting Status of TCP

2024-07-12 Sollae Systems page 39 of 140

example

This example shows how to get the remaining size of receive buffer.

<?php
$rx_free = 1068;
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_bind($pid, "", 0); // binding
do
{
 pid_connect($pid, "10.1.0.2", 1470); // TCP active connection
 usleep(500000);
}
while(pid_ioctl($pid, "get state") != TCP_CONNECTED);

while(($rx_free > 500) && (pid_ioctl($pid, "get state") == TCP_CONNECTED))
{
 $rxbuf = pid_ioctl($pid, "get rxbuf"); // get the size of receive buffer
 $rxlen = pid_ioctl($pid, "get rxlen"); // get the size of received data
 // calculate the available space of receive buffer
 $rx_free = $rxbuf - $rxlen;
 echo "rx free = $rx_free\r\n"; // print the result
 sleep(1);
}
pid_close($pid); // close TCP
?>

PHPoC Device Programming Guide for P40 > TCP > TCP Communication

2024-07-12 Sollae Systems page 40 of 140

TCP Communication

Receiving TCP Data

Data received from network via TCP is stored in receive buffer. pid_recv function is required to read
the data.

The following shows how to use pid_recv function.

pid_recv($pid, $value[, $len]);

example

This example checks and prints the received TCP data every second.

<?php
$rdata = "";
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_bind($pid, "", 0); // binding
pid_connect($pid, "10.1.0.2", 1470); // TCP active connection
do
{
 sleep(1);
 $state = pid_ioctl($pid, "get state"); // get TCP session state
 $rxlen = pid_ioctl($pid, "get rxlen"); // get received data size
 $rlen = pid_recv($pid, $rdata, $rxlen); // receive data
 echo "rlen = $rlen / "; // print received data size
 echo "rdata = $rdata\r\n"; // print received data
 if($rlen)
 $rdata = ""; // flush receive buffer
}
while($state == TCP_CONNECTED);
pid_close($pid);

PHPoC Device Programming Guide for P40 > TCP > TCP Communication

2024-07-12 Sollae Systems page 41 of 140

?>

Sending TCP Data

Data sent by pid_send function is stored in send buffer and transferred to the network via TCP.

The following shows how to use pid_send function.

pid_send($pid, $value[, $len]);

example

This example sends data to network via TCP, checking the available space of send buffer every
second.

<?php
$sdata = "0123456789";
$pid = pid_open("/mmap/tcp0"); // open TCP 0
pid_bind($pid, "", 0); // binding
pid_connect($pid, "10.1.0.2", 1470); // TCP active connection
do
{
 sleep(1);
 $state = pid_ioctl($pid, "get state"); // get session state
 // get available space of send buffer
 $txfree = pid_ioctl($pid, "get txfree");
 $tx_len = pid_send($pid, $sdata, $txfree); // send data
 echo "tx len = $tx_len\r\n"; // print size of send data
}
while($state == TCP_CONNECTED);
pid_close($pid);
?>

The third argument of pid_send function means the length of sending data. The length of sending

PHPoC Device Programming Guide for P40 > TCP > TCP Communication

2024-07-12 Sollae Systems page 42 of 140

data should be less than the remaining data size of send buffer to avoid data loss. It is highly
recommended to check the remaining size of send buffer before sending data.

PHPoC Device Programming Guide for P40 > UDP > Steps of Using UDP

2024-07-12 Sollae Systems page 43 of 140

Steps of Using UDP

General steps of using UDP are as follows:

※ Binding socket can be omitted if there is no requirement of prior setting or data transmission.

PHPoC Device Programming Guide for P40 > UDP > Opening UDP

2024-07-12 Sollae Systems page 44 of 140

Opening UDP

To open UDP, pid_open function is required.

<?php
$pid = pid_open("/mmap/udp0"); // open UDP 0
?>

Refer to Appendix for detailed UDP information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > UDP > Binding UDP

2024-07-12 Sollae Systems page 45 of 140

Binding

Binding which uses pid_bind function is required to receive data from network via UDP.

<?php
$pid = pid_bind($pid, $addr, $port);
?>

Argument $addr is an IP address and $port is port number to bind. When empty string("") is
specified to the IP address, PHPoC assumes the value is the current local IP address.

※ Empty string ("") value is the only option for $addr argument of function bind.

example of binding

<?php
$pid = pid_open("/mmap/udp0"); // open UDP
$port = 1470; // UDP port number
pid_bind($pid, "", $port); // binding
?>

PHPoC Device Programming Guide for P40 > UDP > Setting UDP

2024-07-12 Sollae Systems page 46 of 140

Setting UDP

A destination IP address and port number can be specified before sending UDP data. If so, these
parameters can be omitted in fourth and fifth argument of pid_sendto function. Set command of
pid_ioctl function is required to set UDP.

pid_ioctl($pid, "set ITEM VALUE");

ITEM means setting items and VALUE is possible value of the item.

Available UDP Items

ITEM VALUE Description
dstaddr e.g. 10.1.0.2 destination IP address
dstport e.g. 1470 destination port number

example of setting UDP

<?php
$pid = pid_open("/mmap/udp0"); // open UDP 0
pid_bind($pid, "", 1470); // binding
pid_ioctl($pid, "set dstaddr 10.1.0.2"); // destination IP address
pid_ioctl($pid, "set dstport 1470"); // destination port number

?>

PHPoC Device Programming Guide for P40 > UDP > Getting Status of UDP

2024-07-12 Sollae Systems page 47 of 140

Getting UDP Status

To get status of UDP, get command of pid_ioctl function is required.

$return = pid_ioctl($pid, "get ITEM");

Available UDP States

ITEM Description Return Value Return Type
srcaddr source IP address e.g. 192.168.0.1 string
srcport source port number e.g. 1470 integer
dstaddr destination IP address e.g. 192.168.0.2 string
dstport destination port number e.g. 1470 integer
rxlen received data size[Byte] e.g. 200 integer

Received Data Size

To get received data size, "get rxlen" command of pid_ioctl function is required.

<?php
$rxlen = pid_ioctl($pid, "get rxlen");
?>

example

This example is closed after printing received data size if data comes from network while checking
periodically whether there is data or not.

<?php
$rbuf = "";
$pid = pid_open("/mmap/udp0"); // open UDP 0
pid_bind($pid, "", 1470); // binding
do
{
 $rxlen = pid_ioctl($pid, "get rxlen"); // get received data size
 if($rxlen)
 {
 pid_recvfrom($pid, $rbuf, $rxlen); // receive data
 echo "$rxlen bytes\r\n"; // print size of received data
 }
 usleep(100000);
}while($rxlen == 0); // while receiving no data
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > UDP > UDP Communication

2024-07-12 Sollae Systems page 48 of 140

UDP Communication

Receiving UDP Data

To receive data from network via UDP, pid_recvfrom function is required. There are two receive
buffers of UDP and the following shows how they works. 
※ Refer to Appendix for information about UDP receive buffer size depending on the types of
products.

receiving UDP data from network

reading UDP data from receive buffer

After reading data from receive buffer by calling pid_recvfrom function, PHPoC flushes the buffer.

reading data size less than received data size

Remaining data after reading will be lost by flushing receive buffer.

losing data by no available receive buffer

While each of two receive buffers has data which have unread data, subsequent data from network

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_spec

PHPoC Device Programming Guide for P40 > UDP > UDP Communication

2024-07-12 Sollae Systems page 49 of 140

cannot be received. Therefore, it is recommended to read data as soon as possible in received buffer
right after checking received data size.

example

This example prints received UDP data, checking if there is data comes from network every second.

<?php
$rbuf = "";
$pid = pid_open("/mmap/udp0"); // open UDP 0
pid_bind($pid, "", 1470); // binding
while(1) // infinite loop
{
 $rxlen = pid_ioctl($pid, "get rxlen"); // get received data size
 if($rxlen)
 {
 pid_recvfrom($pid, $rbuf, $rxlen); // receive data
 echo "$rbuf\r\n"; // print received data
 }
 usleep(100000);
}
?>

Sending UDP Data

To send UDP data, pid_sendto function is required.

example of sending UDP data

<?php
$sdata = "01234567";
$pid = pid_open("/mmap/udp0"); // open UDP 0
$slen = pid_sendto($pid, $sdata, 8, 0, "10.1.0.2", 1470); // send data
echo "slen = $slen\r\n"; // print size of send data
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > ST > Steps of Using ST

2024-07-12 Sollae Systems page 50 of 140

Steps of Using ST

General steps of using ST are as follows:

PHPoC Device Programming Guide for P40 > ST > Opening ST

2024-07-12 Sollae Systems page 51 of 140

Opening ST

To open ST, pid_open function is required.

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
?>

※ Refer to Appendix for detailed ST information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST

2024-07-12 Sollae Systems page 52 of 140

Setting and Using ST

To use ST, pid_ioctl function is required. There are four modes.

Mode Description
Free mode normal counter mode
Output Pulse mode mode to output pulse signal through a specified pin
Output Toggle mode mode to output toggle signal through a specified pin
Output PWM mode mode to output infinite pulse through a specified pin

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Common Commands

2024-07-12 Sollae Systems page 53 of 140

Common Commands

Commands listed in the table below are used in all modes of ST.

Command Sub Command Description

set

mode

free set mode: free

output
pulse set mode: output pulse
toggle set mode: output toggle
pwm set mode: output infinite pulse

div
sec set unit: second
ms set unit: millisecond
us set unit: microsecond

reset - reset
get state get current state
start - start
stop - stop

Set Mode

ST provides both normal counter mode (free mode) and output signal mode. There are three output
modes and those are pulse, toggle and pwm. The pwm is infinite pulse mode. Default value of ST
mode is free mode. The following table shows how to set ST to each mode.

Mode Syntax
free pid_ioctl($pid, "set mode free");
pulse pid_ioctl($pid, "set mode output pulse");
toggle pid_ioctl($pid, "set mode output toggle");
pwm pid_ioctl($pid, "set mode output pwm");

Set Unit

ST provides three units as follows. The default value is millisecond.

Unit Syntax
second pid_ioctl($pid, "set div sec");
millisecond pid_ioctl($pid, "set div ms");
microsecond pid_ioctl($pid, "set div us"");

Reset

This command does:

Immediately stop operation of ST and reset operation of timer.
Set ST pin to LOW

Command Syntax
reset pid_ioctl($pid, "reset");

Get State

This command gets the current state of ST.

Command Syntax
get state pid_ioctl($pid, "get state");

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Common Commands

2024-07-12 Sollae Systems page 54 of 140

Return values of this command are as follows:

Return Value Description
0 Stop
1 ~ 5 Running

Start

This command starts ST.

Command Syntax
start pid_ioctl($pid, "start");

Stop

This command immediately stops operation of ST. In output modes, state of output pin keeps the
current state.

Command Syntax
stop pid_ioctl($pid, "stop");

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Free Mode

2024-07-12 Sollae Systems page 55 of 140

Free Mode

Free mode is normal counter mode of ST.

Available commands of pid_ioctl function in free mode are as follows:

Command Sub Command Description

set

mode free set mode: free mode

div
sec set unit: second
ms set unit: millisecond
us set unit: microsecond

dir
up set counter direction: up counter
down set counter direction: down counter

count [T] set the starting count value in down counter mode
reset - reset

get
count get count value
state get current state

start - start
stop - stop

Set Counter Direction

ST can be used as both up counter and down counter. Default value of this item is up counter.

Direction Syntax
up counter pid_ioctl($pid, "set dir up");
down counter pid_ioctl($pid, "set dir down");

Set Count

When ST is down counter mode, the starting value of counter can be set.
How to set count value is as follows:

Command Syntax
set count pid_ioctl($pid, "set count T");

Note that up counter always starts from 0 and is not affected by "set count" command. Valid ranges
for T in down counter are as follows:

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Free Mode

2024-07-12 Sollae Systems page 56 of 140

Unit Valid Range for T
Microsecond 0 ~ (263 - 1)
milisecond 0 ~ (263 - 1) / 1,000
second 0 ~ (263 - 1) / 1,000,000

Get Count Value

Command "get count" returns a current count value.

Command Syntax
get count pid_ioctl($pid, "get count");

Examples of Free Mode

Command "get count" allows you to get the current count value of ST.

<?php
$tick = pid_ioctl($pid, "get count");
?>

example of up counter

This example sets ST to up counter and prints counter value in every second.

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set mode free"); // set mode: free
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set dir up"); // set direction: up counter
pid_ioctl($pid, "start"); // start ST
for($i=0; $i<10; $i++)
{
 $value = pid_ioctl($pid, "get count"); // read the count value
 echo "$value\r\n"; // print the count value
 sleep(1);
}
pid_close($pid);
?>

example of down counter

This example sets ST to down counter with the starting count value and prints counter value in every
second.

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set mode free"); // set mode: free
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set dir down"); // set direction: down counter

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Free Mode

2024-07-12 Sollae Systems page 57 of 140

pid_ioctl($pid, "set count 10"); // set count value: 10
pid_ioctl($pid, "start"); // start ST
for($i = 0; $i < 10; $i++)
{
 $value = pid_ioctl($pid, "get count"); // read the count value
 echo "$value\r\n"; // print the count value
 sleep(1);
}
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 58 of 140

Toggle Mode

Overview

This mode is used to precisely generate rectangular wave, which can be a single pulse or a chain of
pulses with various durations. In this mode, ST pin is toggled after each predefined time durations.

Waveform of ST pin will depend on:

The states of ST pin at the time timer starts.
Time durations between two consecutive toggles.
The number of the toggling times.

A block diagram of ST in toggle mode is as follows:

Available Commands

Command Sub Command Description

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 59 of 140

set

mode output toggle set mode: toggle

div
sec set unit: second
ms set unit: millisecond
us set unit: microsecond

output

od open-drain
pp push-pull
low output LOW
high output HIGH
dev uio0 #pin set output device and pin

invert
0 not invert output
1 invert output

count [T1] ... [T8] set output timing parameters
delay [D] set delay before output signal
repc [N] set repeat count

trigger from
st# set trigger target: st0 ~ st7
php set trigger target: none

reset - reset

get
state get current state
repc get remaining repeat count

start - start
stop - stop

Set Delay

This command is for giving delay before PHPoC outputs signal. The unit of delay depends on the
unit which is set by "set div" command.

Command Syntax
set delay pid_ioctl($pid, "set delay D");

Set Repeat Count

In output toggle mode, this command is used to set the number of times of toggling.

Command Syntax Valid range of N
set repc pid_ioctl($pid, "set repc N"); 0 to 1 billion

If the command is not used, the default value is zero. Setting this value to zero means the maximum
repeat count (1 billion).
(see example of waveform in "Set Count Values" section)

Set Count Values

This command is for defining point of time to output signal. In toggle mode, the valid number of
count value ranges from one to eight. How to use this command is as follows:

Command Syntax
set count pid_ioctl($pid, "set count T1 T2 … T8");

Available values for counts in toggle mode are as follows:

Unit Available Count Values (10㎲ ~ half an hour)
microsecond 10 ~ 1,800,000,000
millisecond 1 ~ 1,800,000
second 1 ~ 1,800

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 60 of 140

This command must be used before timer starts. If not, an error is generated. The list of duration
time is used in circular order if the number of times of toggling exceeds the number of the specified
time duration. The figure below shows waveform in the case of:

"set count T1 T2 T3": sets three count values (T1, T2, T3.)
"set repc 5": the number of toggle times (repeat count) is 5.
state of ST pin when time starts is LOW.

Note that: Waveform is depended on the states of ST pin at the time timer starts. The following
example depicts the different signal when states of ST pin at the time timer start are different. The
number of toggling times is three. Time durations between two consecutive toggles are T1, T2 and
T3, respectively.

If the state of ST pin is LOW at the time timer starts

If the state of ST pin is HIGH at the time timer starts

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 61 of 140

State of ST pin can be:

LOW after "set output dev" command.
LOW after ST "reset" command.
LOW right after ST "set output low" command.
HIGH right after ST "set output high" command.

LOW or HIGH, depending on the previous operation of timer (toggle, pulse, or PWM).

Time durations between two consecutive toggles can be set by using "set count" command.

Set Output [dev D N]

Command Syntax
set output dev D N pid_ioctl($pid, "set output dev uio0 0");

Before using output mode of ST, you must use this command to specify the output pin. Set a device
name (e.g. uio0) and a pin number to D and N.

Set Output [low/high]

This command immediately forces ST pin to LOW or HIGH.

Command Syntax Description
set output low pid_ioctl($pid, "set output low"); Set ST pin to LOW
set output high pid_ioctl($pid, "set output high"); Set ST pin to HIGH

Note that if invert mode is enabled, this command will force ST pin to the state that is invert of
normal operation.

Set Output [od/pp]

This command set output type of ST pin

Command Syntax Description
set output pp pid_ioctl($pid, "set output pp"); Set output type to push-pull

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 62 of 140

Command Syntax Description
set output od pid_ioctl($pid, "set output od"); Set output type to open-drain

If the command is not used, the output type of ST pin is push-pull by default.

Set Output Invert [0/1]

This command is used to enable/disable invert mode.

Command Syntax Description
set output invert 0 pid_ioctl($pid, "set output invert 0"); disbale invert mode
set output invert 1 pid_ioctl($pid, "set output invert 1"); enable invert mode

When invert mode is enabled:

output signal in ST pin will be inverted in compassion with the normal operation.
"set output high" and "set output low" are also inverted.

When the invert mode is changed (from enabled to disabled or vice versa), ST pin is toggled
immediately.

Invert mode is disabled by default.

The following example depicts the different signal when invert mode is disabled and enabled. The
number of toggling time is three. Duration time between two consecutive toggles are T1, T2 and T3,
respectively. "set output high" command is used before timer starts.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 63 of 140

As shown in above figure, when invert mode is enabled, "set output high" command forces ST pin
signal to LOW.

Set Trigger

This command is used when you want to synchronize an ST start time with another ST. Target of
trigger should be one of ST devices.

Target Syntax
ST(st0/1…) pid_ioctl($pid, "set trigger from st0");
php pid_ioctl($pid, "set trigger from php");

Default value of trigger target is "php"(no target).

Get Repeat Count

Command "get repc" is for reading the remaining repeat count which will be executed.

Command Syntax
get repc pid_ioctl($pid, "get repc");

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 64 of 140

Example of Toggle Mode

Toggle mode toggles output signals.

example of toggle mode

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set mode output toggle"); // set mode: toggle
pid_ioctl($pid, "set output dev uio0 0"); // set output device / pin: uio0 / 0
pid_ioctl($pid, "set repc 1"); // set repeat count: 1
pid_ioctl($pid, "set count 1"); // set count: T1 only
pid_ioctl($pid, "start"); // start ST
while(pid_ioctl($pid, "get state"));
pid_close($pid);

?>

The meaning of "set count" is amount of time between starting ST and output toggle signal. The
figure below shows waveform of the above example.

example of repetitive toggle mode

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set mode output toggle"); // set mode: toggle
pid_ioctl($pid, "set output dev uio0 0"); // set output device / pin: uio0 / 0
pid_ioctl($pid, "set repc 3"); // set repeat count: 3
pid_ioctl($pid, "set count 1 2 1"); // set count values: 1, 2 and 1
pid_ioctl($pid, "start"); // start ST
while(pid_ioctl($pid, "get state"));
pid_close($pid);

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle Mode

2024-07-12 Sollae Systems page 65 of 140

?>

In the example above, three count values (T1, T2 and T3) are set and those are 1, 2 and 1 second.
The waveform is as follows:

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Pulse Mode

2024-07-12 Sollae Systems page 66 of 140

Pulse Mode

Overview

This mode is used to precisely generate rectangular wave, which can be a single pulse or a chain of
pulses. The pulses are identical to each other.

Waveform of ST pin will:

NOT depend on the state of ST pin at the time timer starts.
Depend on time durations that a signal stays in low-level and high-level.
Depend on the number of the pulses.

A block diagram of ST in pulse mode is as follows:

Available Commands

Command Sub Command Description

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Pulse Mode

2024-07-12 Sollae Systems page 67 of 140

set

mode output pulse set mode: pulse

div
sec set unit: second
ms set unit: millisecond
us set unit: microsecond

output

od open-drain
pp push-pull
low output: LOW
high output: HIGH
dev uio0 #pin set output device and pin

invert
0 not invert output
1 invert output

count [T1] [T2] set output timing parameters
delay [D] set delay
repc [N] set repeat count

trigger from
st# set trigger target: st0 ~ st7
php set trigger target: none

reset - reset

get
state get state
repc get remaining repeat count

start - start
stop - stop

Set Delay

This command is for giving delay before PHPoC outputs signal. The unit of delay depends on the
unit which is set by "set div" command.

Command Syntax
set delay pid_ioctl($pid, "set delay D");

Set Repeat Count

In output pulse mode, this command is used to set the number of pulses.

Command Syntax Valid range of N
set repc pid_ioctl($pid, "set repc N"); 0 to 1 billion

If the command is not used, the default value is zero. Setting this value to zero means the maximum
repeat count (1 billion).
(see example of waveform in "Set Count Values" section)

Set Count Values

A rectangular pulse is composed of high-level signal and low-level signal. In output pulse mode, this
command is used to specify the durations signal stays in low-level and high-level during a pulse. The
unit of time is specified in "set div" command.

Command Syntax
set count pid_ioctl($pid, "set count T1 T2");

Available values for count T1 and T2 in pulse mode are as follows:

Unit Available Count Values (10㎲ ~ half an hour)
microsecond 10 ~ 1,800,000,000
millisecond 1 ~ 1,800,000
second 1 ~ 1,800

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Pulse Mode

2024-07-12 Sollae Systems page 68 of 140

This command must be used before timer starts. If not, an error is generated.
The figure below shows waveform in the case of:

"set repc 3": three pulses
"set count T1 T2"

Set Output [dev D N]

Command Syntax
set output dev D N pid_ioctl($pid, "set output dev uio0 0");

Before using output mode of ST, you must use this command to specify the output pin. Set a device
name (e.g. uio0) and a pin number to D and N.

Set Output [low/high]

This command immediately forces ST pin to LOW or HIGH.

Command Syntax Description
set output low pid_ioctl($pid, "set output low"); Set ST pin to LOW
set output high pid_ioctl($pid, "set output high"); Set ST pin to HIGH

Note that if invert mode is enabled, this command will force ST pin to the state that is invert of
normal operation.

Set Output [od/pp]

This command set output type of ST pin

Command Syntax Description
set output pp pid_ioctl($pid, "set output pp"); Set output type to push-pull
set output od pid_ioctl($pid, "set output od"); Set output type to open-drain

If the command is not used, the output type of ST pin is push-pull by default.

Set Output Invert [0/1]

This command is used to enable/disable invert mode.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Pulse Mode

2024-07-12 Sollae Systems page 69 of 140

Command Syntax Description
set output invert 0 pid_ioctl($pid, "set output invert 0"); disbale invert mode
set output invert 1 pid_ioctl($pid, "set output invert 1"); enable invert mode

When invert mode is enabled:

output signal in ST pin will be inverted in compassion with the normal operation.
"set output high" and "set output low" are also inverted.

When the invert mode is changed (from enabled to disabled or vice versa), ST pin is toggled
immediately. In other words, this command specifies the form of pulse.
There are two forms of pulse:

invert mode is disabled

invert mode is enabled

Invert mode is disabled by default.

Set Trigger

This command is used when you want to synchronize an ST start time with another ST. Target of

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Pulse Mode

2024-07-12 Sollae Systems page 70 of 140

trigger should be one of ST devices.

Target Syntax
ST(st0/1…) pid_ioctl($pid, "set trigger from st0");
php pid_ioctl($pid, "set trigger from php");

Default value of trigger target is "php"(no target).

Get Repeat Count

Command "get repc" is for reading the remaining repeat count which will be executed.

Command Syntax
get repc pid_ioctl($pid, "get repc");

Example of Pulse Mode

example of pulse mode (normal pulse output)

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid, "set output dev uio0 0"); // set output device / pin: uio0 / 0
pid_ioctl($pid, "set count 1 2"); // set count values: 1 and 2
pid_ioctl($pid, "set repc 1"); // set repeat count: 1
pid_ioctl($pid, "start"); // start ST
while(pid_ioctl($pid, "get state"));
pid_close($pid);
?>

Pulse mode basically changes level from low to high. The timing of change depends on both
division rate and count values (T1 and T2). The following figure shows waveform of the example
above.

example of pulse mode (inverted pulse output)

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Pulse Mode

2024-07-12 Sollae Systems page 71 of 140

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid, "set output dev uio0 0"); // set output device / pin: uio0 / 0
pid_ioctl($pid, "set count 1 2"); // set count values: 1 and 2
pid_ioctl($pid, "set output invert 1"); // invert output
pid_ioctl($pid, "set repc 1"); // set repeat count: 1
pid_ioctl($pid, "start"); // start ST
while(pid_ioctl($pid, "get state"));
pid_close($pid);

?>

After executing the command line "set output invert 1", all output levels are inverted including a
pulse output. The figure below shows waveform of example above.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle vs Pulse Mode

2024-07-12 Sollae Systems page 72 of 140

Toggle mode vs Pulse mode

In order to generate a pulse or a limited chain of pulses:

In some cases, only output toggle mode can be used.
In some cases, both output toggle mode and output pulse mode can be used.

In case of generating chain of pulses that durations are different among pulses, only toggle mode
can be used.

In case of generating chain of pulses that contain half a pulse, only toggle mode can be used.

In case of generating chain of pulses that durations of every pulse are the same, both modes can be
used.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Toggle vs Pulse Mode

2024-07-12 Sollae Systems page 73 of 140

In this case, the codes in two modes are almost the same, except for "set repc" command. Since this
command specifies the number of toggle time in toggle mode and specifies the number of pulses in
pulse mode, in order to generate the same chain of pulses, the "repc" value in toggle mode must be
twice as "repc" value in pulse mode.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > PWM Mode

2024-07-12 Sollae Systems page 74 of 140

PWM Mode

Overview

This mode is used to precisely generate PWM signal. PWM signal is the endless chain of identical
rectangular pulses. In other words, PWM signal is periodical signal, each cycle is a rectangular pulse.
PWM signal is composed of low-level signal and high-level signal.

A block diagram of ST in pwm mode is as follows:

Available Commands

Command Sub Command Description

set

mode output pwm set mode: PWM

div
sec set unit: second
ms set unit: millisecond
us set unit: microsecond

output

od open-drain
pp push-pull
low output LOW
high output HIGH
dev uio0 #pin set output device and pin

invert
0 not invert output
1 invert output

count [T1] [T2] set output timing parameters
delay [D] set delay

trigger from
st# set trigger target: st0 ~ st7
php set trigger target: none

reset - reset
get state get current state
start - start
stop - stop

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > PWM Mode

2024-07-12 Sollae Systems page 75 of 140

Set Count Values

In output PWM mode, this command is used to specify the low-level duration and high-level
duration. The unit of time is specified in "set div" command.

Command Syntax
set count pid_ioctl($pid, "set count T1 T2");

Available count values in pwm mode are as follows:

Unit Available Count Values (0 ~ half an hour)
microsecond 0, 10 ~ 1,800,000,000
millisecond 0 ~ 1,800,000
second 0 ~ 1,800

This command must be used before timer starts. If not, an error is generated.
The figure below shows waveform of PWM signal

※ Duty cycle = T1 / (T1 + T2)
※ Frequency = 1 / (T1 + T2)

Set Output [dev D N]

Command Syntax
set output dev D N pid_ioctl($pid, "set output dev uio0 0");

Before using output mode of ST, you must use this command to specify the output pin. Set a device
name (e.g. uio0) and a pin number to D and N.

Set Output [low/high]

This command immediately forces ST pin to LOW or HIGH.

Command Syntax Description
set output low pid_ioctl($pid, "set output low"); Set ST pin to LOW

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > PWM Mode

2024-07-12 Sollae Systems page 76 of 140

Command Syntax Description
set output high pid_ioctl($pid, "set output high"); Set ST pin to HIGH

Note that if invert mode is enabled, this command will force ST pin to the state that is invert of
normal operation.

Set Output [od/pp]

This command set output type of ST pin

Command Syntax Description
set output pp pid_ioctl($pid, "set output pp"); Set output type to push-pull
set output od pid_ioctl($pid, "set output od"); Set output type to open-drain

If the command is not used, the output type of ST pin is push-pull by default.

Set Output Invert [0/1]

This command is used to enable/disable invert mode.

Command Syntax Description
set output invert 0 pid_ioctl($pid, "set output invert 0"); disbale invert mode
set output invert 1 pid_ioctl($pid, "set output invert 1"); enable invert mode

When invert mode is enabled:

output signal in ST pin will be inverted in compassion with the normal operation.
"set output high" and "set output low" are also inverted.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > PWM Mode

2024-07-12 Sollae Systems page 77 of 140

Invert mode is disabled by default.

Set Trigger

This command is used when you want to synchronize an ST start time with another ST. Target of
trigger should be one of ST devices.

Target Syntax
ST(st0/1…) pid_ioctl($pid, "set trigger from st0");
php pid_ioctl($pid, "set trigger from php");

Default value of trigger target is "php"(no target).

Example of PWM Mode

example of PWM mode

<?php
$pid = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid, "set div sec"); // set unit: second
pid_ioctl($pid, "set mode output pwm"); // set mode: PWM
pid_ioctl($pid, "set output dev uio0 0"); // set output dev / pin: uio0 / 0
pid_ioctl($pid, "set count 1 1"); // set count values: 1 and 1
pid_ioctl($pid, "start"); // start ST
sleep(10);
pid_ioctl($pid, "stop"); // stop ST
pid_close($pid);

?>

The figure below shows waveform of the example above.

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Trigger

2024-07-12 Sollae Systems page 78 of 140

Trigger

Trigger command is used when you want to synchronize an ST start time with another ST. The
example below shows how to synchronize ST1 to ST0 using trigger.

example of trigger

<?php
$pid0 = pid_open("/mmap/st0"); // open ST 0
pid_ioctl($pid0, "set div sec"); // set unit: second
pid_ioctl($pid0, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid0, "set count 1 1"); // set count values: 1 and 1
pid_ioctl($pid0, "set repc 2"); // set repeat count: 2
pid_ioctl($pid0, "set output dev uio0 0"); // set output dev / pin: uio0 / 0

$pid1 = pid_open("/mmap/st1"); // open ST 1
pid_ioctl($pid1, "set div sec"); // set unit: second
pid_ioctl($pid1, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid1, "set trigger from st0"); // set trigger target: st0
pid_ioctl($pid1, "set count 1 1"); // set count values: 1 and 1
pid_ioctl($pid1, "set repc 2"); // set repeat count: 2
pid_ioctl($pid1, "set output dev uio0 1"); // set output dev / pin: uio0 / 1

pid_ioctl($pid1, "start"); // start ST 1
pid_ioctl($pid0, "start"); // start ST 0

while(pid_ioctl($pid1, "get state"));
pid_close($pid0);
pid_close($pid1);
?>

As you see the example above, ST which you want to synchronize the output time should start
before the trigger target starts.

The output is as follows:

PHPoC Device Programming Guide for P40 > ST > Setting and Using ST > Trigger

2024-07-12 Sollae Systems page 79 of 140

error range of ST

ST leads some error ranges and those are as follows:

Case Error Range
Simultaneously use 2 STs approximately 1㎲
Simultaneously use 8 STs approximately 4㎲

※ Use HT if you need the high accuracy.

PHPoC Device Programming Guide for P40 > HT > Steps of Using HT

2024-07-12 Sollae Systems page 80 of 140

Steps of Using HT

General steps of using HT are as follows:

PHPoC Device Programming Guide for P40 > HT > Opening HT

2024-07-12 Sollae Systems page 81 of 140

Opening HT

To open HT, pid_open function is required.

<?php
$pid = pid_open("/mmap/ht0"); // open HT0
?>

※ Refer to Appendix for detailed HT information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT

2024-07-12 Sollae Systems page 82 of 140

Setting and Using HT

HT provides four operation modes and you need to use required commands of pid_ioctl function in
each mode.

Mode Description
Output Pulse mode mode to output pulse signal through an HT pin
Output Toggle mode mode to output toggle signal through an HT pin
Output PWM mode mode to output infinite pulse through an HT pin
Capture mode mode to capture signals from an HT pin

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Common Commands

2024-07-12 Sollae Systems page 83 of 140

Common Commands

Commands listed in the table below are used in all modes of HT.

Command Sub Command Description

set

mode

output
pulse set mode: output pulse
toggle set mode: output toggle
pwm set mode: output infinite pulse

capture
rise set mode: capture with rising edge
fall set mode: capture with falling edge
toggle set mode: capture with rising or falling edge

div
ms set unit: millisecond
us set unit: microsecond

trigger from
ht0 set trigger target (should be ht0)
php set trigger target (none)

reset - reset

get
state get current state
div get division rate
repc get remaining repeat count

start - start
stop - stop

Set Mode

HT provides various output modes as well as capture mode. How to set each mode is as follows:

Mode Syntax

Output
pulse mode pid_ioctl($pid, "set mode output pulse");
toggle mode pid_ioctl($pid, "set mode output toggle");
pwm mode pid_ioctl($pid, "set mode output pwm");

Capture
rising edge pid_ioctl($pid, "set mode capture rise");
falling edge pid_ioctl($pid, "set mode capture fall");
rising/falling edge pid_ioctl($pid, "set mode capture toggle");

Set Unit

HT provides millisecond and microsecond unit and the default value is microsecond. How to set
each unit is as follows:

Unit Syntax
millisecond pid_ioctl($pid, "set div ms");
microsecond pid_ioctl($pid, "set div us");

Set Trigger

How to set trigger is as follows:

Target Syntax
ht0 pid_ioctl($pid, "set trigger from ht0");
php pid_ioctl($pid, "set trigger from php"); // No trigger target

HT0 is only option for setting HT as target of trigger in output mode. The default value is "php".

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Common Commands

2024-07-12 Sollae Systems page 84 of 140

Reset

This command does:

Immediately stop operation of HT and reset operation of timer.
Set HT pin to LOW

Command Syntax
reset pid_ioctl($pid, "reset");

Get Status

This command is for getting status of HT.

Status Syntax
current state pid_ioctl($pid, "get state");
division rate pid_ioctl($pid, "get div");
remaining count of output / capture pid_ioctl($pid, "get repc");

Return values of this command are as follows:

Division Return Value Description

current state
0 stopped
1 ~ 3 running

division rate
42 microsecond
42000 millisecond

remaining count of output / capture 0 ~ 64 -

Start

This command starts HT.

Command Syntax
start pid_ioctl($pid, "start");

Stop

Command "stop" immediately stops operation of HT. In output modes, state of output pin keeps
unchanged.

Command Syntax
stop pid_ioctl($pid, "stop");

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle Mode

2024-07-12 Sollae Systems page 85 of 140

Toggle Mode

Overview

This mode is used to precisely generate rectangular wave, which can be a single pulse or a chain of
pulses with various durations. In this mode, HT pin is toggled after each predefined time durations.

Waveform of HT pin will depend on:

The states of HT pin at the time timer starts.
Time durations between two consecutive toggles.
The number of the toggling times.

Available Commands

Command Sub Command Description

set

mode output toggle set mode: toggle

div
ms set unit: millisecond
us set unit: microsecond

output

od open-drain
pp push-pull
low output LOW
high output HIGH

invert
0 not invert output
1 invert output

count [T1] ... [T8] set output timing parameters
repc [N] set repeat count

trigger from
ht0 set trigger target: ht0
php set trigger target: none

reset - reset

get
state get current state
div get division rate
repc get remaining repeat count

start - start
stop - stop

Set Repeat Count

In output toggle mode, this command is used to set the number of times of toggling.

Command Syntax Valid range of N
set repc pid_ioctl($pid, "set repc N"); 0 to 64

If the command is not used, the default value is zero. Setting this value to zero means the maximum
repeat count (64). (see example of waveform in "Set Count Values" section)

Set Count Values

In output toggle mode, this command is used to specify list of time duration that right after the
time duration is elapsed, output signal at HT pin is toggled. The unit of time is specified in "set div"
command. The number of the time duration ranges from one to eight. Valid value for each time
duration is from 1 to 32764.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle Mode

2024-07-12 Sollae Systems page 86 of 140

Command Syntax Valid range of each T
set count pid_ioctl($pid, "set count T1 T2 … T8"); 1 to 32764

This command must be used before timer starts. If not, an error is generated. The list of duration
time is used in circular order if the number of times of toggling exceeds the number of the specified
time duration. The figure below shows waveform in the case of:

"set count T1 T2 T3": sets three count values (T1, T2, T3.)
"set repc 5": the number of toggle times (repeat count) is 5.
"state of HT pin when time starts is LOW.

Note that: Waveform is depended on the states of HT pin at the time timer starts. The following
example depicts the different signal when states of HT pin at the time timer start are different. The
number of toggling times is three. Time durations between two consecutive toggles are T1, T2 and
T3, respectively.

If the state of HT pin is LOW at the time timer starts

If the state of HT pin is HIGH at the time timer starts

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle Mode

2024-07-12 Sollae Systems page 87 of 140

State of HT pin can be:

LOW after system reboots.
LOW after HT "reset" command.
LOW right after HT "set output low" command.
HIGH right after HT "set output high" command.
LOW or HIGH, depending on the previous operation of timer (toggle, pulse, or PWM).

Time durations between two consecutive toggles can be set by using "set count" command.

Set Output [low/high]

This command immediately forces HT pin to LOW or HIGH.

Command Syntax Description
set output low pid_ioctl($pid, "set output low"); Set HT pin to LOW
set output high pid_ioctl($pid, "set output high"); Set HT pin to HIGH

Note that if invert mode is enabled, this command will force HT pin to the state that is invert of
normal operation.

Set Output [od/pp]

This command set output type of HT pin

Command Syntax Description
set output pp pid_ioctl($pid, "set output pp"); Set output type to push-pull
set output od pid_ioctl($pid, "set output od"); Set output type to open-drain

If the command is not used, the output type of HT pin is push-pull by default.

Set Output Invert [0/1]

This command is used to enable/disable invert mode.

Command Syntax Description
set output invert 0 pid_ioctl($pid, "set output invert 0"); disbale invert mode

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle Mode

2024-07-12 Sollae Systems page 88 of 140

Command Syntax Description
set output invert 1 pid_ioctl($pid, "set output invert 1"); enable invert mode

When invert mode is enabled:

output signal in HT pin will be inverted in compassion with the normal operation.
"set output high" and "set output low" are also inverted.

When the invert mode is changed (from enabled to disabled or vice versa), HT pin is toggled
immediately.

Invert mode is disabled by default.

The following example depicts the different signal when invert mode is disabled and enabled. The
number of toggling time is three. Duration time between two consecutive toggles are T1, T2 and T3,
respectively. "set output high" command is used before timer starts.

As shown in above figure, when invert mode is enabled, "set output high" command forces HT pin
signal to LOW.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle Mode

2024-07-12 Sollae Systems page 89 of 140

Example of Toggle Mode

example of toggle mode

<?php
$pid = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid, "set div us"); // set unit: microsecond
pid_ioctl($pid, "set mode output toggle"); // set mode: toggle
pid_ioctl($pid, "set repc 1"); // set repeat count: 1
pid_ioctl($pid, "set count 1"); // set count T1: 1
pid_ioctl($pid, "start"); // start HT
while(pid_ioctl($pid, "get state"));
pid_close($pid);
?>

The meaning of "set count" is amount of time between starting HT and output toggle signal. The
figure below shows waveform of the above example.

example of repetitive toggle mode

<?php
$pid = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid, "set div us"); // set unit: microsecond
pid_ioctl($pid, "set mode output toggle"); // set mode: toggle
pid_ioctl($pid, "set repc 3"); // set repeat count: 3
pid_ioctl($pid, "set count 1 2 1"); // set count values: 1, 2 and 1
pid_ioctl($pid, "start"); // start HT
while(pid_ioctl($pid, "get state"));
pid_close($pid);

?>

In the example above, three count values (T1, T2 and T3) are set and those are 1, 2 and 1
microsecond. The waveform of HT output is as follows:

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle Mode

2024-07-12 Sollae Systems page 90 of 140

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Pulse Mode

2024-07-12 Sollae Systems page 91 of 140

Pulse Mode

Overview

This mode is used to precisely generate rectangular wave, which can be a single pulse or a chain of
pulses. The pulses are identical to each other.

Waveform of HT pin will:

NOT depend on the state of HT pin at the time timer starts.
Depend on time durations that a signal stays in low-level and high-level.
Depend on the number of the pulses.

Available Commands

Command Sub Command Description

set

mode output pulse set mode: pulse

div
ms set unit: millisecond
us set unit: microsecond

output

od open-drain
pp push-pull
low output: LOW
high output: HIGH

invert
0 not invert output
1 invert output

count [T1] [T2] set output timing parameters
repc [N] set repeat count

trigger from
ht0 set trigger target: ht0
php set trigger target: none

reset - reset

get
state get current state
div get division rate
repc get remaining repeat count

start - start
stop - stop

Set Repeat Count

In output pulse mode, this command is used to set the number of pulses.

Command Syntax Vaild range of N
set repc pid_ioctl($pid, "set repc N"); 0 to 64

If the command is not used, the default value is zero. Setting this value to zero means the maximum
repeat count (64).
(see example of waveform in "Set Count Values" section)

Set Count Values

A rectangular pulse is composed of high-level signal and low-level signal. In output pulse mode, this
command is used to specify the durations signal stays in low-level and high-level during a pulse. The
unit of time is specified in "set div" command.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Pulse Mode

2024-07-12 Sollae Systems page 92 of 140

Command Syntax
set count pid_ioctl($pid, "set count T1 T2");

Valid values for T1 and T2 in pulse mode are as follows:

Division Available Count Values
T1 1 ~ 32763
T2 1 ~ 32763
T1 + T2 2 ~ 32764

This command must be used before timer starts. If not, an error is generated.
The figure below shows waveform in the case of:

"set repc 3": three pulses
"set count T1 T2"

Set Output [low/high]

This command immediately forces HT pin to LOW or HIGH.

Command Syntax Description
set output low pid_ioctl($pid, "set output low"); Set HT pin to LOW
set output high pid_ioctl($pid, "set output high"); Set HT pin to HIGH

Note that if invert mode is enabled, this command will force HT pin to the state that is invert of
normal operation.

Set Output [od/pp]

This command set output type of HT pin

Command Syntax Description
set output pp pid_ioctl($pid, "set output pp"); Set output type to push-pull
set output od pid_ioctl($pid, "set output od"); Set output type to open-drain

If the command is not used, the output type of HT pin is push-pull by default.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Pulse Mode

2024-07-12 Sollae Systems page 93 of 140

Set Output Invert [0/1]

This command is used to enable/disable invert mode.

Command Syntax Description
set output invert 0 pid_ioctl($pid, "set output invert 0"); disbale invert mode
set output invert 1 pid_ioctl($pid, "set output invert 1"); enable invert mode

When invert mode is enabled:

output signal in HT pin will be inverted in compassion with the normal operation.
"set output high" and "set output low" are also inverted.

When the invert mode is changed (from enabled to disabled or vice versa), HT pin is toggled
immediately. In other words, this command specifies the form of pulse.
There are two forms of pulse:

invert mode is disabled

invert mode is enabled

Invert mode is disabled by default.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Pulse Mode

2024-07-12 Sollae Systems page 94 of 140

Example of Pulse Mode

example of pulse mode (normal pulse output)

<?php
$pid = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid, "set div us"); // set unit: microsecond
pid_ioctl($pid, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid, "set count 1 2"); // set count values: 1, 2
pid_ioctl($pid, "set repc 1"); // set repeat count: 1
pid_ioctl($pid, "start"); // start HT
while(pid_ioctl($pid, "get state"));
pid_close($pid);
?>

Pulse mode basically changes level from low to high. The timing of change depends on both
division rate and count values (T1 and T2). The figure below shows waveform of the example above.

example of pulse mode (inverted pulse output)

<?php
$pid = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid, "set div us"); // set unit: microsecond
pid_ioctl($pid, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid, "set count 1 2"); // set count values: 1, 2
pid_ioctl($pid, "set repc 1"); // set repeat count: 1
pid_ioctl($pid, "set output invert 1"); // invert output
pid_ioctl($pid, "start"); // start HT
while(pid_ioctl($pid, "get state"));
pid_close($pid);
?>

After executing the command line "set output invert 1", all output levels are inverted including a
pulse output. The figure below shows waveform of the example above.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Pulse Mode

2024-07-12 Sollae Systems page 95 of 140

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle vs Pulse Mode

2024-07-12 Sollae Systems page 96 of 140

Toggle mode vs Pulse mode

In order to generate a pulse or a limited chain of pulses:

In some cases, only output toggle mode can be used.
In some cases, both output toggle mode and output pulse mode can be used.

In case of generating chain of pulses that durations are different among pulses, only toggle mode
can be used.

In case of generating chain of pulses that contain half a pulse, only toggle mode can be used.

In case of generating chain of pulses that durations of every pulse are the same, both modes can be
used.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Toggle vs Pulse Mode

2024-07-12 Sollae Systems page 97 of 140

In this case, the codes in two modes are almost the same, except for "set repc" command. Since this
command specifies the number of toggle time in toggle mode and specifies the number of pulses in
pulse mode, in order to generate the same chain of pulses, the "repc" value in toggle mode must be
twice as "repc" value in pulse mode.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > PWM Mode

2024-07-12 Sollae Systems page 98 of 140

PWM Mode

Overview

This mode is used to precisely generate PWM signal. PWM signal is the endless chain of identical
rectangular pulses. In other words, PWM signal is periodical signal, each cycle is a rectangular pulse.
PWM signal is composed of low-level signal and high-level signal.

Available Commands

Command Sub Command Description

set

mode output pwm set mode: pwm

div
ms set unit: millisecond
us set unit: microsecond

output

od open-drain
pp push-pull
low output LOW
high output HIGH

invert
0 not invert output
1 invert output

count [T1] [T2] set output timing parameters

trigger from
ht0 set trigger target: ht0
php set trigger target: none

reset - reset

get
state get current state
div get division rate

start - start
stop - stop

Set Count Values

In output PWM mode, this command is used to specify the low-level duration and high-level
duration. The unit of time is specified in "set div" command.

Command Syntax
set count pid_ioctl($pid, "set count T1 T2");

Valid values for T1 and T2 in pulse mode are as follows:

Division Available Count Values
T1 1 ~ 32763
T2 1 ~ 32763
T1 + T2 2 ~ 32764

This command must be used before timer starts. If not, an error is generated.
The figure below shows waveform of PWM signal

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > PWM Mode

2024-07-12 Sollae Systems page 99 of 140

※ Duty cycle = T1 / (T1 + T2)
※ Frequency = 1 / (T1 + T2)

Set Output [low/high]

This command immediately forces HT pin to LOW or HIGH.

Command Syntax Description
set output low pid_ioctl($pid, "set output low"); Set HT pin to LOW
set output high pid_ioctl($pid, "set output high"); Set HT pin to HIGH

Note that if invert mode is enabled, this command will force HT pin to the state that is invert of
normal operation.

Set Output [od/pp]

This command set output type of HT pin

Command Syntax Description
set output pp pid_ioctl($pid, "set output pp"); Set output type to push-pull
set output od pid_ioctl($pid, "set output od"); Set output type to open-drain

If the command is not used, the output type of HT pin is push-pull by default.

Set Output Invert [0/1]

This command is used to enable/disable invert mode.

Command Syntax Description
set output invert 0 pid_ioctl($pid, "set output invert 0"); disbale invert mode
set output invert 1 pid_ioctl($pid, "set output invert 1"); enable invert mode

When invert mode is enabled:

output signal in HT pin will be inverted in compassion with the normal operation.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > PWM Mode

2024-07-12 Sollae Systems page 100 of 140

"set output high" and "set output low" are also inverted.

Invert mode is disabled by default.

Example of PWM Mode

example of PWM mode

<?php
$pid = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid, "set div us"); // set unit: microsecond
pid_ioctl($pid, "set mode output pwm"); // set mode: PWM mode
pid_ioctl($pid, "set count 1 1"); // set count values: 1, 1
pid_ioctl($pid, "start"); // start HT
usleep(50);
pid_ioctl($pid, "stop"); // stop HT
pid_close($pid);
?>

The figure below shows waveform of the example above.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > PWM Mode

2024-07-12 Sollae Systems page 101 of 140

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Trigger and Output Modes

2024-07-12 Sollae Systems page 102 of 140

Trigger with Output Modes

Trigger command is used when you want to synchronize an HT start time with HT 0 in output
modes. The example below shows how to synchronize HT 1 to HT 0 using trigger.

example of trigger in pulse mode

<?php
$pid0 = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid0, "set div us"); // set unit: microsecond
pid_ioctl($pid0, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid0, "set count 10 10"); // set count values: 10 and 10
pid_ioctl($pid0, "set repc 2"); // set repeat count: 2

$pid1 = pid_open("/mmap/ht1"); // open HT 1
pid_ioctl($pid1, "set div us"); // set unit: microsecond
pid_ioctl($pid1, "set mode output pulse"); // set mode: pulse
pid_ioctl($pid1, "set trigger from ht0"); // set a target of trigger: ht0
pid_ioctl($pid1, "set count 10 10"); // set count values: 10 and 10
pid_ioctl($pid1, "set repc 1"); // set repeat count: 1

pid_ioctl($pid1, "start"); // start HT 1
pid_ioctl($pid0, "start"); // start HT 0

while(pid_ioctl($pid1, "get state"));
pid_close($pid0);
pid_close($pid1);
?>

As you see the example above, HT which you want to synchronize the output time should start
before the trigger target (HT 0) starts.

The output signal is as follows:

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Trigger and Output Modes

2024-07-12 Sollae Systems page 103 of 140

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Capture Mode

2024-07-12 Sollae Systems page 104 of 140

Capture Mode

This mode is used when you want to get a count value from a specific time which an event occurs.
Available commands in the capture mode are as follows:

Command Sub Command Description

set

mode capture

rise set capture mode: rising edge
fall set capture mode: falling edge

toggle
set capture mode:
rising or falling edge

div
ms set unit: millisecond
us set unit: microsecond

repc [N] set capture count

trigger from

ht0 set a target of trigger: ht0
php set a target of trigger: none

pin

rise set a type of pin trigger event: rising
fall set a type of pin trigger event: falling

toggle
set a type of pin trigger event:
rising and falling

reset - reset

get
count [N] get a count value
state get current state
repc get remaining repeat count

start - start
stop - stop

Set Repeat Count

Repeat count in the capture mode means the number of capturing a specific event. Available repeat
count N is from 0 to 64. The default value is 0 and it is regarded as maximum value (64).

Command Syntax
repeat count pid_ioctl($pid, "set repc N");

Set Trigger

You can set a trigger target to a HT pin with event as well as HT 0 in the capture mode. How to set
this command is as follows:

Division Syntax
ht0 pid_ioctl($pid, "set trigger from ht0");

pin event

pid_ioctl($pid, "set trigger from pin");
pid_ioctl($pid, "set trigger from pin rise");
pid_ioctl($pid, "set trigger from pin fall");
pid_ioctl($pid, "set trigger from pin toggle");

php pid_ioctl($pid, "set trigger from php");

There are three event types for pin event: rising edge, falling edge and toggle. You can set the pin
event trigger to one of them and the default is toggle when you do not specify any of event types.
The default value of setting trigger is "php" which means no trigger target is selected. Although a
trigger target is set, you can cancel the designation by specifying the trigger target to "php". In this
case, HT starts capturing when it starts.

※ Note that HT2 does not support pin event trigger.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Capture Mode

2024-07-12 Sollae Systems page 105 of 140

Get a Count Value

This command is for reading a captured count value of HT. Index of the count values can be
specified behind this command. How to use it is as follows:

Division Syntax
[N]th count value pid_ioctl($pid, "get count [N]");

The counter index starts from 0. If you do not specify the index, it will be set to 0. The maximum
value of the index is 64.
Accumulated counter values cannot be greater than 32764 in the capture mode. If it exceeds the
limitation, HT immediately stops capturing.

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Trigger and Capture Modes

2024-07-12 Sollae Systems page 106 of 140

Trigger with Capture Mode

Capture mode also defines trigger timing by setting trigger target. Pin input as well as HT 0 can be
a trigger target. Trigger timing means the point of time that HT starts internal counter for capturing
signal so it is possible to implement capturing signals even if HT is not triggered and the count
values are all zero.
The following example shows setting a trigger target to rising edge event and capturing two count
values with falling edge.

<?php
$pid = pid_open("/mmap/ht0"); // open HT 0
pid_ioctl($pid, "set div us"); // set unit: microsecond
pid_ioctl($pid, "set mode capture fall"); // set mode: capture with falling edge
// set trigger target: pin event with rising edge
pid_ioctl($pid, "set trigger from pin rise");
pid_ioctl($pid, "set repc 2"); // set repeat count: 2
pid_ioctl($pid, "start"); // start HT 0
while(pid_ioctl($pid, "get state"))
 ;
for($i = 0; $i < 2; $i++)
 echo "[$i]", pid_ioctl($pid, "get count $i"), "\r\n"; // read count values
pid_close($pid);

?>

If two square waves with period of 20㎲ are coming while running an example above, counter values
of index 0 and 1 are as follows:

The result is as follows:

PHPoC Device Programming Guide for P40 > HT > Setting and Using HT > Trigger and Capture Modes

2024-07-12 Sollae Systems page 107 of 140

[0]10
[1]20

PHPoC Device Programming Guide for P40 > ADC > Steps of Using ADC

2024-07-12 Sollae Systems page 108 of 140

Steps of Using ADC

General steps of using ADC are as follows:

PHPoC Device Programming Guide for P40 > ADC > Opening ADC

2024-07-12 Sollae Systems page 109 of 140

Opening ADC

To open ADC, pid_open function is required.

<?php
$pid = pid_open("/mmap/adc0"); // open ADC
?>

※ Refer to Appendix for detailed ADC information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > ADC > Setting ADC Channel

2024-07-12 Sollae Systems page 110 of 140

Setting ADC Channel

Setting an ADC channel is required to be set before using ADC. If you do not set this, a channel
which has the same index of channel with the ADC device's index will be assigned. For example,
Channel 0 is automatically assigned to ADC 0 as default channel. You can read ADC values from the
channels sequentially by switching among channels.
To set channel or switch to another channel, use the following command:

pid_ioctl($pid, "set ch N"); // set channel

You can get current channel id by using following command:

<?php
pid_ioctl($pid, "get ch"); // get the current channel
?>

Parameter N means the number of channel.

example of setting ADC channel

<?php
$pid = pid_open("/mmap/adc0"); // open ADC 0
pid_ioctl($pid, "set ch 1"); // set channel to 1
pid_ioctl($pid, "set ch 2"); // set channel to 2
echo pid_ioctl($pid, "get ch"); // print the current channel(output: 2)
pid_close($pid); // close ADC
?>

PHPoC Device Programming Guide for P40 > ADC > Reading ADC Value

2024-07-12 Sollae Systems page 111 of 140

Reading ADC Value

pid_read function is used to read value of ADC.

<?php
pid_read($pid, $value);
?>

Parameter $value is a variable to contain the returned ADC value.

The maximum value of reference voltage is 3.3V and this is used as a default value. If you want to
use lower voltage than this, you can input it through reference voltage interface pin(AREF).

An analog input which ranges from 0V to the reference voltage is linearly converted to a digital
value which ranges from 0 to 4095.

example of reading ADC value

The example below reads ADC value and calculates the equivalent analog input voltage

<?php
$adc_value = 0;
$pid = pid_open("/mmap/adc0"); // open ADC 0
pid_ioctl($pid, "set ch 0"); // set channel to 0
pid_read($pid, $adc_value); // read the ADC value
echo "adc value: $adc_value\r\n"; // print the ADC value
$voltage = $adc_value * 3.3 / 4095.0;
echo "voltage : $voltage[V]\r\n"; // print the voltage
pid_close($pid); // close ADC
?>

PHPoC Device Programming Guide for P40 > SPI > Overview

2024-07-12 Sollae Systems page 112 of 140

SPI Overview

PHPoC provides Serial Peripheral Interface (SPI) as one of methods to communicate with other serial
device.

SPI Connection

SPI requires 4 signal lines between a master and a slave.

SPI Signal Lines

Label Name Description
SCK Serial Clock clock for synchronization
MOSI Master Output, Slave Input master's transmission line
MISO Master Input, Slave Output slave's transmission line
SS Slave Select master's slave select line

SPI connection

Selecting a Slave

A master's three lines except for SS are commonly connected to all slaves while SS is separately
connected to individual slave. Therefore, a master which has three slaves should have at least three
SS ports. To select a slave, the master outputs LOW to the line which is connected to the slave and
output HIGH to the other lines. That means a master can communicate with a single slave at a time.
After finishing communication, the master outputs HIGH to the line.

Data Communication

SPI Modes

There are four SPI modes (0 ~ 3) according to the sampling methods.

PHPoC Device Programming Guide for P40 > SPI > Overview

2024-07-12 Sollae Systems page 113 of 140

Bit Transmission Order

A master and a slave should be set to have the same bit transmission order. There are two ways:
One is to send LSB first and the other is to send MSB first.

Transmission Sequence

Data buffer of a master and a slave has a type of ring buffer. Thus, sending and receiving data are
simultaneously implemented at all times. The following figure shows data flow in case of sending
LSB first.

PHPoC Device Programming Guide for P40 > SPI > Steps of Using SPI

2024-07-12 Sollae Systems page 114 of 140

Steps of Using SPI

General steps of using SPI are as follows:

PHPoC Device Programming Guide for P40 > SPI > Opening SPI

2024-07-12 Sollae Systems page 115 of 140

Opening SPI

To open SPI, pid_open function is required.

<?php
$pid = pid_open("/mmap/spi0"); // open SPI
?>

※ Refer to Appendix for detailed SPI information.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > SPI > Setting and Using SPI

2024-07-12 Sollae Systems page 116 of 140

Setting and Using SPI

It is required to call pid_ioctl function when you set or use SPI. Available commands of pid_ioctl
function for SPI are as follows:

Command Sub Command Description

set

lsb
0 set a bit transmission order: MSB first
1 set a bit transmission order: LSB first

data
8 set a size of data unit: 8 bits
16 set a size of data unit: 16 bits

div [N] set a division: 2/4/8/16/32/64/128/256
mode [M] set an SPI mode: 0/1/2/3

nss
id N select a SPI slave, 0 ~ 7
dev uio0 #pin assign a uio pin as a Slave Select(SS) pin

get
rxlen

get the number of pending bytes in receive
buffer

txlen get the number of pending bytes in send buffer
txfree get the free send buffer size

req
start request to write data
reset request to reset bus

Setting SPI

You can set SPI mode, bit transmission order, size of data unit and division by using a "set"
command.

Set a Bit Transmission Order

You can set 0 or 1 for setting SPI bit transmission order and the default value is 0. If this value is set
to 0, MSB will be transmitted first. How to set the bit transmission order is as follows:

Bit Transmission Order Syntax
MSB > LSB pid_ioctl($pid, "set lsb 0");
LSB > MSB pid_ioctl($pid, "set lsb 1");

Set a Size of Data Unit

You can set 8 or 16 for setting size of data unit and the default value is 8. How to set the size of
data unit is as follows:

Size of Data Unit Syntax
8 bits pid_ioctl($pid, "set data 8");
16 bits pid_ioctl($pid, "set data 16");

Set a Data Rate

Data rate depends on division rate of PHPoC's basic clock and you can choose one of the division
rate values of 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256. The default value is 256. How to set the data rate
is as follows:

Division Rate Syntax
1 of N pid_ioctl($pid, "set div N");

PHPoC Device Programming Guide for P40 > SPI > Setting and Using SPI

2024-07-12 Sollae Systems page 117 of 140

※ Basic clock of P4S-341/P4S-342 is 42MHz. Thus, data rate is approximately 164Kbps when the
division rate is set to 256.

SPI Mode

You can set one of SPI modes of 0 to 3 and the default value is 3. How to set SPI mode is as
follows:

SPI Mode Syntax
mode 0 pid_ioctl($pid, "set mode 0");
mode 1 pid_ioctl($pid, "set mode 1");
mode 2 pid_ioctl($pid, "set mode 2");
mode 3 pid_ioctl($pid, "set mode 3");

Select Slaves and Assign Pins

When the PHPoC communicates with more than one slave, you can select a slave using the "set nss
id" command. PHPoC can communicate with up to 8 SPI slaves. ID can be selected from 0 ~ 7 and
the default is 0.

Division Syntax
Select N th slave pid_ioctl($pid, "set nss N");

The each slave select(SS) pin of the slave which has an ID 1 to 7 can be set using the "set nss dev"
command. A uio device name and a pin number should be specified after this command.

an example of assigning a SS pin

pid_ioctl($pid, "set nss id 1");
pid_ioctl($pid, "set nss dev uio0 4");
pid_ioctl($pid, "set nss id 2");
pid_ioctl($pid, "set nss dev uio0 5");
...

***※ Note: Slave select pin (SS) of slave ID 0 is fixed to 0th pin of uio0 and can not be changed to
another pin.

Getting SPI Status

You can get status of SPI by using "get" command.

Get the Number of Pending Bytes in Receive and Send Buffer

How to get the number of pending bytes in receive and send buffer as follows:

Division Syntax
Send buffer pid_ioctl($pid, "get txlen");
Receive buffer pid_ioctl($pid, "get rxlen");

PHPoC Device Programming Guide for P40 > SPI > Setting and Using SPI

2024-07-12 Sollae Systems page 118 of 140

Get the Remaining Size of Send Buffer

How to get the remaining size of send buffer in byte-unit is as follows:

Division Syntax
remaining size of send buffer pid_ioctl($pid, "get txfree");

Using SPI

Request to Write Data

You can request to write data with this command. You should input data to send buffer before using
this command. After writing data, you should read data from an SPI slave as much as you sent. How
to use this command is as follows:

Command Syntax
Request to Write Data pid_ioctl($pid, "req start");

Request to Reset Bus

You can reset an SPI bus with this command when communication is bad.

Command Syntax
Request to Request Bus pid_ioctl($pid, "req reset");

PHPoC Device Programming Guide for P40 > SPI > Examples of Using SPI

2024-07-12 Sollae Systems page 119 of 140

Example of Using SPI

Write Data to a Slave

The following code is a common example that an SPI master writes data to a slave.

example of writing data

<?php
$wbuf = 0xA2; // Data to be sent
$rbuf = "";

$pid = pid_open("/mmap/spi0"); // open SPI0
pid_ioctl($pid, "set mode 3"); // set SPI mode to 3
pid_ioctl($pid, "set lsb 0"); // set bit transmission order: MSB first
pid_write($pid, $wbuf, 1); // write 1 byte to buffer: 0xA2
pid_ioctl($pid, "req start"); // request to write data
while(pid_ioctl($pid, "get txlen")) // check the size of transmitted data
 ;
pid_read($pid, $rbuf, 1); // read 1 byte
pid_close($pid);
?>

The reason of reading 1 byte in the bottom of the above example is because reading and writing
data are simultaneously implemented at all times in SPI communication.

Read Data from a Slave

The following code is a common example that an SPI master reads data from a slave.

example of reading data

<?php
$wbuf = 0x00; // Data to be sent
$rbuf = "";

$pid = pid_open("/mmap/spi0"); // open SPI0
pid_ioctl($pid, "set mode 3"); // set SPI mode to 3
pid_ioctl($pid, "set lsb 0"); // set bit transmission order: MSB first
pid_write($pid, $wbuf, 1); // write 1 byte to buffer: 0x00
pid_ioctl($pid, "req start"); // request to write data
while(pid_ioctl($pid, "get txlen")) // check the size of transmitted data
 ;
pid_read($pid, $rbuf, 1); // read 1 byte
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > I2C > Overview

2024-07-12 Sollae Systems page 120 of 140

I2C Overview

PHPoC provides I2C, two lines bus interface.

I2C Data Structure

I2C data is always sent in 8-bit unit. Structure of I2C data is as follows:

Start and Stop Conditions

Start and stop conditions of I2C are as follows:

Condition SCL SDA
Start HIGH HIGH > LOW
Stop HIGH LOW > HIGH

Slave Addressing

PHPoC uses 7-bit slave addressing. The LSB of address byte defines that the frame is for reading or
for writing.

Read / Write Conditions

I2C communication consist of reading or writing data from a master.

Division SCL SDA
Read 8th bit - HIGH HIGH
Write 8th bit - HIGH LOW

ACK / NACK

Both an I2C master and a slave send acknowledgement (ACK) when receive 8 bits data. Correct
acknowledgement is implemented by output HIGH on 9th bit. If the state of bus is HIGH, has not

PHPoC Device Programming Guide for P40 > I2C > Overview

2024-07-12 Sollae Systems page 121 of 140

received data yet.

Division SCL SDA
Acknowledgement(ACK) 9th bit - HIGH LOW
No Acknowledgement (NACK) 9th bit - HIGH HIGH

I2C Commuication Scenario

4 different scenarios of I2C communication are as follows. In the scenarios below, white background
areas are a master's output and gray background areas are a slave's output.

Success to Write Data

Fail to Write Data

Success to Read Data

Fail to Read Data

PHPoC Device Programming Guide for P40 > I2C > Steps of Using I2C

2024-07-12 Sollae Systems page 122 of 140

Steps of Using I2C

General steps of using I2C is as follows:

PHPoC Device Programming Guide for P40 > I2C > Opening I2C

2024-07-12 Sollae Systems page 123 of 140

Opening I2C

To open I2C, pid_open function is required.

<?php
$pid = pid_open("/mmap/i2c0"); // open I2C
?>

※ Refer to Appendix for detailed I2C information.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > I2C > Setting and Using I2C

2024-07-12 Sollae Systems page 124 of 140

Setting and Using I2C

To use or set I2C, pid_ioctl function is required. Available commands are as follows:

Command Sub Command Description

set
mode

sm set data rate: standard - 100 Kbps
fm set data rate: fast - 400 Kbps

daddr [A] set address: local device address
saddr [A] set address: slave device address

get

rxlen get the number of pending bytes in receive buffer
txlen get the number of pending bytes in send buffer
txfree get the remaining size of send buffer

error
nack get the number of NACK in the last transaction
bus get the number of bus error in the last transaction

state 0 - idle, etc. - I2C internal operation

req

read [N] request to read

write
- request to write
wait request to write and wait ("req stop" is required)

stop request to stop writing data ("req wait" is required)
reset request to reset bus

Setting I2C

You can set a communication mode and a device address by using a "set" command.

Set Data Rate

PHPoC provides standard mode and fast mode. The standard mode is the default value.

Communication Mode Syntax
standard pid_ioctl($pid, "set mode sm");
fast pid_ioctl($pid, "set mode fm");

Set Device Address

An I2C master uses a device address to select a slave to send data and a local device address to set
its own device address. How to set those addresses is as follows:

Type Syntax
slave device address pid_ioctl($pid, "set saddr [A]");
local device address pid_ioctl($pid, "set daddr [A]");

Each device address should be entered in 2 digits hexadecimal number. LSB of this byte is always
zero because PHPoC supports 7 bits addressing for I2C. Note that there are some reserved
addresses. If you use those addresses, PHPoC will stop due to errors.

Addresses (Binary)
Example(Hexa) Comment

7 6 5 4 3 2 1 0
X X X X X X X 1 E1, A3, 1B LSB is 1
0 0 0 0 X X X X 00 ~ 0F All of 4 Upper bits are 0
1 1 1 1 X X X X F0 ~ FF All of 4 Upper bits are 1

PHPoC Device Programming Guide for P40 > I2C > Setting and Using I2C

2024-07-12 Sollae Systems page 125 of 140

Getting I2C Status

You can get status of I2C by using "get" command.

Get the Number of Pending Bytes in Send and Receive Buffer

How to get the number of pending bytes in send and receive buffer is as follows:

Division Syntax
Send buffer pid_ioctl($pid, "get txlen");
Receive buffer pid_ioctl($pid, "get rxlen");

Get the Remaining Size of Send Buffer

How to get the remaining size of send buffer in byte-unit is as follows:

Division Syntax
remaining size of send buffer pid_ioctl($pid, "get txfree");

Get Amount of Errors

You can check the amount of bus errors and NACK in the last transaction.

Division Syntax
NACK pid_ioctl($pid, "get error nack");
bus Error pid_ioctl($pid, "get error bus");

Get Status

How to get an I2C state is as follows: 0 will be returned in idle state and the other values will be
returned if otherwise.

Division Syntax
State pid_ioctl($pid, "get state");

Using I2C

Request to Read Data

An I2C master requests to read data from an I2C slave with this command. After sending this data,
you can read it by the slave by pid_read function.

Division Syntax
Request to Read Data pid_ioctl($pid, "req read [N]");

Request to Write Data

An I2C master requests to write data to an I2C slave with this command. There are two ways and
those are as follows:

Division Syntax
Request to Write Data pid_ioctl($pid, "req write");
Request to Write Data and Wait pid_ioctl($pid, "req write wait");
Stop Writing Data pid_ioctl($pid, "req stop");

PHPoC Device Programming Guide for P40 > I2C > Setting and Using I2C

2024-07-12 Sollae Systems page 126 of 140

When "req write" command runs, a master immediately sends data. Thus, you have to input data to
a buffer before running this command. On the other hand, "req wait" command changes bus state
to start condition and does not change it to stop condition until "req stop" command runs. Thus,
you can write data to a slave by using pid_write function before "req stop" command runs.

Request to Reset Bus

You can reset an I2C bus with this command when communication is bad.

Command Syntax
Request to Request Bus pid_ioctl($pid, "req reset");

PHPoC Device Programming Guide for P40 > I2C > Examples of Using I2C

2024-07-12 Sollae Systems page 127 of 140

Example of Using I2C

Writng Data to a Slave

The following code is a common example that an I2C master writes data to a slave.

example of writing data

<?php
$wbuf = 0x7A;
$pid = pid_open("/mmap/i2c0"); // open I2C 0
pid_ioctl($pid, "set mode fm"); // set data rate: fast mode
pid_ioctl($pid, "set saddr ee"); // set slave device address: 0xEE
pid_write($pid, $wbuf, 1); // input a byte to buffer: 0x7A
pid_ioctl($pid, "req write"); // request to write
while(pid_ioctl($pid, "get txlen")) // check received data
 ;
pid_close($pid);
?>

example of standing by and running of writing data

<?php
$pid = pid_open("/mmap/i2c0"); // open I2C 0
pid_ioctl($pid, "set mode fm"); // set data rate: fast mode
pid_ioctl($pid, "set saddr ee"); // set slave device address: 0xEE
pid_ioctl($pid, "req write wait"); // request to write and wait
pid_write($pid, 0x7A, 1); // write 1 byte: 0x7A
pid_write($pid, 0x8A, 1); // write 1 byte: 0x8A
pid_write($pid, 0x9A, 1); // write 1 byte: 0x9A
while(pid_ioctl($pid, "get txlen")) // check received data
 ;
pid_ioctl($pid, "req stop"); // stop writing data
pid_close($pid);
?>

Reading Data from a Slave

The following code is a common example that an I2C master receives data from a slave.

example of reading data

<?php
$rbuf = "";
$pid = pid_open("/mmap/i2c0"); // open I2C

PHPoC Device Programming Guide for P40 > I2C > Examples of Using I2C

2024-07-12 Sollae Systems page 128 of 140

pid_ioctl($pid, "set mode fm"); // set data rate: fast mode
pid_ioctl($pid, "set saddr ee"); // set slave device address: 0xEE
pid_ioctl($pid, "req read 2"); // request to read 2 bytes
while(pid_ioctl($pid, "get rxlen") < 2) // check received data
 ;
pid_read($pid, $rbuf); // read buffer
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > RTC > Overview

2024-07-12 Sollae Systems page 129 of 140

RTC Overview

PHPoC provides Real Time Clock (RTC) for keeping accurate time. RTC is powered by an internal
battery show it keep running even when system power is off.

PHPoC Device Programming Guide for P40 > RTC > Steps of Using RTC

2024-07-12 Sollae Systems page 130 of 140

Steps of Using RTC

General steps of using RTC are as follows:

PHPoC Device Programming Guide for P40 > RTC > Opening RTC

2024-07-12 Sollae Systems page 131 of 140

Opening RTC

To open RTC, pid_open function is required.

<?php
$pid = pid_open("/mmap/rtc0"); // open RTC
?>

※ Refer to Appendix for detailed RTC information depending on the types of products.

http://www.phpoc.com/support/manual/phpoc_device_programming_guide_for_p40/contents.php?id=app_devinfo

PHPoC Device Programming Guide for P40 > RTC > Setting RTC Time

2024-07-12 Sollae Systems page 132 of 140

Setting RTC Time
To set current time of RTC, "set date" command of pid_ioctl function is used.

pid_ioctl($pid, "set date TIME");

TIME is a string and the structure is as follows:

Division Year Month Day Hour Minute Second
Format YYYY MM DD hh mm ss
example 1 2000 01 03 03 05 07
example 2 2010 12 28 19 59 16

The following example shows how to set time.

example of setting RTC

<?php
$pid = pid_open("/mmap/rtc0"); // open RTC0
$date = "20160720135607"; // 13:56:07, 20th July, 2016
pid_ioctl($pid, "set date $date"); // set RTC time
pid_close($pid);
?>

PHPoC Device Programming Guide for P40 > RTC > Getting RTC Time

2024-07-12 Sollae Systems page 133 of 140

Getting RTC Time

To read current time from RTC, pid_ioctl function is used.

pid_ioctl($pid, "get ITEM");

Available RTC Information

ITEM Description Return Value Return Type
date date and time e.g. 20160720135607 string

wday day of week
0: Sun, 1: Mon, 2: Tue, 3: Wed,
4: Thu, 5: Fri, 6: Sat

integer

example of getting RTC information

<?php
$date = "";
$wday = 0;
$pid = pid_open("/mmap/rtc0"); // open RTC 0
$date = pid_ioctl($pid, "get date"); // get the date and time
$wday = pid_ioctl($pid, "get wday"); // get the day of week
pid_close($pid);
?>

※ Return value of RTC time has the same structure with a value for setting time.

"date()" Function

PHPoC provides an internal function for getting RTC information. You can get RTC information with
various formats by using this function.

example of getting RTC information by "date()" function

<?php
$date1 = date("Y-m-d H:i:s");
$date2 = date("D M j H:i:s Y");
echo "$date1\r\n"; // output e.g. 2016-07-20 13:56:07
echo "$date2\r\n"; // output e.g. Wed Jul 20 13:56:07 2016
?>

※ Refer to the PHPoC Internal Functions document for detailed information of date function.

http://www.phpoc.com/support/manual/phpoc_internal_functions/

PHPoC Device Programming Guide for P40 > Appendix > Device Related Functions

2024-07-12 Sollae Systems page 134 of 140

Device Related Functions

PHPoC provides a bunch of internal functions for using devices as follows:

Function Use Format
pid_bind pid_bind(PID[, IP, PORT]);
pid_close pid_close(PID);
pid_connect pid_connect(PID, IP, PORT);
pid_ioctl pid_ioctl(PID, COMMAND);
pid_listen pid_listen(PID, [BACKLOG]);
pid_open pid_open(PID[, FLAG]);
pid_read pid_read(PID, BUF[, LEN]);
pid_recv pid_recv(PID, BUF[, LEN, FLAG]);
pid_recvfrom pid_recvfrom(PID, BUF[, LEN, FLAG, IP, PORT]);
pid_send pid_send(PID, BUF[, LEN, FLAG]);
pid_sendto pid_sendto(PID, BUF[, LEN, FLAG, IP, PORT]);
pid_write pid_write(PID, BUF[, LEN]);

※ Refer to the PHPoC Internal Functions document for detailed information of internal functions.

http://www.phpoc.com/support/manual/phpoc_internal_functions/

PHPoC Device Programming Guide for P40 > Appendix > Device Information

2024-07-12 Sollae Systems page 135 of 140

Device Information

The Number of Device Depending on Product Types

Device P4S-341 / P4S-342 P4M-400
UART 2 2
NET 1 2
TCP 5 5
UDP 5 5
UIO 1 (24 CH) 2 (27 CH)
ST 8 8
HT 4 4
ADC 2 (6 CH) 2 (4 CH)
RTC 1 1
SPI 1 1
I2C 1 1

Device File Path Depending on Product Types

UART

Product Path of the Device

P4S-341 / P4S-342 / P4M-400
/mmap/uart0
/mmap/uart1

NET

Product Path of the Device Note
P4S-341 / P4M-400 /mmap/net0 Ethernet
P4S-342 / P4M-400 /mmap/net1 Wireless LAN

TCP

Product Path of the Device

P4S-341 / P4S-342 / P4M-400

/mmap/tcp0
/mmap/tcp1
/mmap/tcp2
/mmap/tcp3
/mmap/tcp4

UDP

Product Path of the Device

P4S-341 / P4S-342 / P4M-400

/mmap/udp0
/mmap/udp1
/mmap/udp2
/mmap/udp3
/mmap/udp4

I/O

PHPoC Device Programming Guide for P40 > Appendix > Device Information

2024-07-12 Sollae Systems page 136 of 140

Product Path of the Device and Mapping Information

P4S-341 / P4S-342

/mmap/uio0

P4M-400

/mmap/uio0

/mmap/uio1

ST

Product Path of the Device

P4S-341 / P4S-342 / P4M-400

/mmap/st0
/mmap/st1
/mmap/st2
/mmap/st3
/mmap/st4
/mmap/st5
/mmap/st6
/mmap/st7

HT

Product Path of the Device

P4S-341 / P4S-342 / P4M-400

/mmap/ht0
/mmap/ht1
/mmap/ht2
/mmap/ht3

PHPoC Device Programming Guide for P40 > Appendix > Device Information

2024-07-12 Sollae Systems page 137 of 140

ADC

Product Path of the Device

P4S-341 / P4S-342 / P4M-400
/mmap/adc0
/mmap/adc1

SPI

Product Path of the Device
P4S-341 / P4S-342 / P4M-400 /mmap/spi0

I2C

Product Path of the Device
P4S-341 / P4S-342 / P4M-400 /mmap/i2c0

RTC

Product Path of the Device
P4S-341 / P4S-342 / P4M-400 /mmap/rtc0

ENV and User Memory

Product Path of the Device Size (Byte)

P4S-341 / P4S-342 / P4M-400

System ENV /mmap/envs 1536
User ENV /mmap/envu 1536

User Memory

/mmap/um0 64
/mmap/um1 64
/mmap/um2 64
/mmap/um3 64

Nonvolatile Memory /mmap/nm0 2048

PHPoC Device Programming Guide for P40 > Appendix > F/W Specification

2024-07-12 Sollae Systems page 138 of 140

F/W Specification and Restriction

Firmware

Firmware Product
P40 P4S-341, P4S-342, P4M-400

Specification

Item Value Description
ENVS 1,536 Size of System ENV, byte
ENVU 1,536 Size of User ENV, byte
WLAN 1 Wireless LAN
EMAC 1 Ethernet
UART 2 The number of UART
FLOAT Support Floating Point Numbers
SSL Support SSL communication
PHP_MAX_NAME_SPACE 16 The number of Namespace
PHP_NAME_LEN 32 Size of User Identifier
PHP_MAX_USER_DEF_NAME 480 The number of User Identifier
PHP_LLSTR_BLK_SIZE 64 Size of String Block, byte
PHP_MAX_LLSTR_BLK 192 The number of String Blocks
string buffer size 12K Size of string buffer, byte
PHP_MAX_STRING_LEN 1,536 Size of string variable, byte
PHP_INT_MAX ≒ 9.2*1018 Max value of integer type
EZFS_MAX_NAME_LEN 64 Size of EZFS filename, byte
TASK 2 The number of Task
TCP 5 The number of TCP
UDP 5 The number of UDP
TCP_RXBUF_SIZE 1,068 TCP receive buffer size
TCP_TXBUF_SIZE 1,152 TCP send buffer size
PDB_TXBUF_SIZE 2,048 PHPoCD send buffer size
HTTP_TXBUF_SIZE 1,536 HTTP send buffer size
UART_RXBUF_SIZE 1,024 UART send/receive buffer size
UDP_RXBUF_SIZE 512 UDP receive buffer size
ST 8 Software Timer
HT 4 Hardware Timer
ADC 2 Analog Input (ADC)
SPI 1 SPI
I2C 1 I2C
RTC 1 RTC

Limitations

Item limitation
Level of Namespace PHP_MAX_NAME_SPACE - 1
Level of Function Call PHP_MAX_NAME_SPACE - 2
Size of User Identifier PHP_NAME_LEN - 1
Size of String Variable PHP_MAX_STRING_LEN - 2
Size of Array Offset string length - 2
Size of Filename EZFS_MAX_NAME_LEN - 1
Size of arguments for system function PHP_LLSTR_BLK_SIZE - 1
Size of arguments for pid_ioctl function PHP_LLSTR_BLK_SIZE - 1
Size of $address of function sendto PHP_LLSTR_BLK_SIZE - 1
Size of $needle & $replace of function str_replace PHP_LLSTR_BLK_SIZE - 1

PHPoC Device Programming Guide for P40 > Appendix > F/W Specification

2024-07-12 Sollae Systems page 139 of 140

Item limitation
Size of $address of function inet_pton PHP_LLSTR_BLK_SIZE - 1
Size of $address of function inet_ntop PHP_LLSTR_BLK_SIZE - 1
Size of $delimiter of function explode PHP_LLSTR_BLK_SIZE - 1
Maximum size of UDP data for receiving UDP receive buffer size - 2

PHPoC Device Programming Guide for P40 > Appendix > Revision History

2024-07-12 Sollae Systems page 140 of 140

Revision History

240710 (F/W: 2.3.1)

Correct some errors

210113 (F/W: 2.3.1)

Remove SSL methods: tls1_client, tls1_server
Remove TCP APIs: TELNET, SSH
Improve example codes about a TCP client connection
Add the Appendix > Revision History page

	Device
	Path of Device Files
	Types of Devices
	Steps of Using Devices
	Overview
	Steps of Using Digital I/O
	Opening Digital I/O
	Setting Digital I/O
	Using Digital I/O
	Steps of Using UART
	Opening UART
	Setting UART
	Getting Status of UART
	Using UART
	Steps of Using NET
	Opening NET
	Setting NET
	Getting Status of NET
	Steps of Using TCP
	Opening TCP
	Setting TCP
	How to Use SSL
	How to Use Web Socket Server
	TCP Connection
	Getting Status of TCP
	TCP Communication
	Steps of Using UDP
	Opening UDP
	Binding
	Setting UDP
	Getting UDP Status
	UDP Communication
	Steps of Using ST
	Opening ST
	Setting and Using ST
	Common Commands
	Free Mode
	Toggle Mode
	Pulse Mode
	Toggle mode vs Pulse mode
	PWM Mode
	Trigger
	Steps of Using HT
	Opening HT
	Setting and Using HT
	Common Commands
	Toggle Mode
	Pulse Mode
	Toggle mode vs Pulse mode
	PWM Mode
	Trigger with Output Modes
	Capture Mode
	Trigger with Capture Mode
	Steps of Using ADC
	Opening ADC
	Setting ADC Channel
	Reading ADC Value
	SPI Overview
	Steps of Using SPI
	Opening SPI
	Setting and Using SPI
	Example of Using SPI
	I2C Overview
	Steps of Using I2C
	Opening I2C
	Setting and Using I2C
	Example of Using I2C
	RTC Overview
	Steps of Using RTC
	Opening RTC
	Setting RTC Time
	Getting RTC Time
	Device Related Functions
	Device Information
	F/W Specification and Restriction
	Revision History

